

Available online at www.sciencedirect.com

http://actams.wipm.ac.cn

A BIFURCATION PROBLEM ASSOCIATED TO AN ASYMPTOTICALLY LINEAR FUNCTION*

Soumaya SÂANOUNI

Department of Mathematics, Faculty of Sciences of Tunis, University of Tunis El Manar, Campus University 2092 Tunis, Tunisia E-mail: saanouni.soumaya@yahoo.com

Nihed TRABELSI

Higher Institut of Medicals Technologies of Tunis, University of Tunis El Manar, 9 Street Dr. Zouhair Essafi 1006 Tunis, Tunisia E-mail: nihed.trabelsi78@gmail.com

Abstract We study the existence of positive solutions to a two-order semilinear elliptic problem with Dirichlet boundary condition

$$(P_{\lambda}) \quad \begin{cases} -\operatorname{div}(c(x)\nabla u) = \lambda f(u) \text{ in } \Omega, \\ u = 0 \quad \text{ on } \partial\Omega, \end{cases}$$

where $\Omega \subset \mathbb{R}^n$; $n \geq 2$ is a smooth bounded domain; f is a positive, increasing and convex source term and c(x) is a smooth bounded positive function on $\overline{\Omega}$. We also prove the existence of critical value and claim the uniqueness of extremal solutions.

Key words extremal solution; regularity; bifurcation; stability

2010 MR Subject Classification 35B65; 34D35; 70K50

1 Introduction and Statement of Main Results

The main interest of non-linear physics lies in its ability to explain the evolution of the problems: a phenomenon usually depends on a number of parameters, called control parameters that control the evolution of the system. By variation of the parameters and the result of non-linearities, the system may undergo transitions. In math, they are bifurcations.

In biology; population dynamics, the equations of reactions-diffusion were proposed by Turing (1952) for modeling morphogenesis phenomena. A model of interaction of species or chemicals is given by the differential equations

$$\frac{\partial u}{\partial t} = \operatorname{div}(c\nabla u) + \lambda f,$$

where u represents the density, $\operatorname{div}(c\nabla u)$ represents the substance of diffusion through the system, and f models the interaction of substances. Moreover the broadcast functions c and the terms of reactions f may depend on (x, t) and the concentrations u it as a nonlinearity way.

^{*}Received May 27, 2015; revised April 25, 2016.

In case where c and t are constants, various authors have studied the existence of weak solutions for the bifurcation problem

$$(E_{\lambda}) \quad \begin{cases} -\Delta u = \lambda f(u) \text{ in } \Omega, \\ u > 0 \quad \text{ in } \Omega, \\ u = 0 \quad \text{ on } \partial \Omega. \end{cases}$$

where Ω is a bounded open subset of \mathbb{R}^n , $n \geq 2$.

Mironescu and Rădulescu proved in [13, 14] that there exists $0 < \lambda^* < \infty$, a critical value of the parameter λ , such that (E_{λ}) has a minimal, positive, classical solution u_{λ} for $0 < \lambda < \lambda^*$ and does not have a weak solution for $\lambda > \lambda^*$.

Our main interest here will be in the study of a bifurcation problem for $\lambda > 0$

$$(P_{\lambda}) \begin{cases} -\operatorname{div}(c(x)\nabla u) = \lambda f(u) \text{ in } \Omega, \\ u > 0 \quad \text{ in } \Omega, \\ u = 0 \quad \text{ on } \partial\Omega, \end{cases}$$

which is a generalization of (E_{λ}) . Where Ω be a smooth bounded domain in \mathbb{R}^n $(n \geq 2)$, c(x) is a smooth bounded positive function on $\overline{\Omega}$ and $f : \mathbb{R} \longrightarrow \mathbb{R}$ is a positive, increasing and convex smooth function, such that

$$f(0) > 0$$
 and $\lim_{t \to \infty} \frac{f(t)}{t} = a \in (0, \infty).$

The value a was be crucial in the study of (E_{λ^*}) and of the behavior of u_{λ} when λ tends to λ^* .

Throughout the paper, we denote by $\|\cdot\|_2$, the $L^2(\Omega)$ -norm, whereas we denote by $\|\cdot\|$, the $H_0^1(\Omega)$ -norm given by

$$\|u\|^2 = \int_{\Omega} |\nabla u|^2.$$

We say that $u \in H_0^1(\Omega)$ is a weak solution of the problem (P_λ) , if $f(u) \in L^1(\Omega)$ and

$$\int_{\Omega} c(x) \nabla u. \nabla \varphi = \lambda \int_{\Omega} f(u) \varphi, \quad \forall \varphi \in H^1_0(\Omega).$$

Such solutions are usually known as weak energy solutions. For short, we will refer to them simply as solutions wish is assuredly by the next lemma.

Lemma 1.1 Since $f(t) \leq at + f(0)$, if $u \in L^1(\Omega)$ is a weak solution of (P_{λ}) , it is easily seen by a standard bootstrap argument that u is always a classical solution.

In the rest of this paper, we denote by a solution of problem (P_{λ}) any weak or classical solution.

Definition 1.2 We say that a solution u_{λ} of problem (P_{λ}) is minimal if $u_{\lambda} \leq u$ in Ω for any solution u of (P_{λ}) .

Definition 1.3 We say that $u \in H_0^1(\Omega)$ is a supersolution of (P_λ) if $f(u) \in L^1(\Omega)$ and

 $-\operatorname{div}(c(x)\nabla u) \ge \lambda f(u)$ in $\mathcal{D}'(\Omega)$ for any nonnegative test function.

Reversing the inequality one defines the notion of subsolution.

Download English Version:

https://daneshyari.com/en/article/4663348

Download Persian Version:

https://daneshyari.com/article/4663348

Daneshyari.com