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Abstract In this article, we study the large time behavior of the 3-D isentropic compressible

Navier-Stokes equation in the partial space-periodic domains, and simultaneously show that

the related profile systems can be described by like Navier-Stokes equations with suitable

“pressure” functions in lower dimensions. Our proofs are based on the energy methods

together with some delicate analysis on the corresponding linearized problems.
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1 Introduction and Main Results

In this article, we consider the 3-D isentropic compressible Navier-Stokes equation for (t, z)

∈ [0, +∞) × Ω:






∂tρ + div m = 0,

∂tm + div
(m ⊗ m

ρ

)

+ ∇p(ρ) = µ∆
(m

ρ

)

+ (µ + µ′)∇div
(m

ρ

)

,
(1.1)
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where Ω = T
ℓ × R

3−ℓ, T
ℓ = [0, 2π]ℓ is the ℓ-dimensional torus (1 ≤ ℓ ≤ 3), z = (z1, z2, z3),

ρ = ρ(t, z) is the density, m = (m1, m2, m3)(t, z) is the momentum, p = p(ρ) is the pressure

with P ′(ρ) > 0 and P ′′(ρ) > 0 for ρ > 0, and µ and µ′ are the first and the second viscosity

coefficient respectively, which satisfy µ > 0 and 2
3µ + µ′ ≥ 0. The initial data of (1.1) are given

as follows

(ρ, m)(0, z) = (1 + ρ0(z), m0(z)), (1.2)

where (ρ0, m0) ∈ H4(Ω) × (H4(Ω))3, and 1 + ρ0(z) > 0 for z ∈ Ω.

It is obvious that (ρ, m) = (1, 0) is a steady solution of (1.1) with the initial data (ρ, m)(0, z)

= (1, 0). We will be concerned with the perturbation problem of (1.1) to this constant state.

Denote

ν1 = µ, ν2 = µ + µ′, γ =
√

p′(1).

As in [14, 15], if set φ = γ(ρ − 1), then (1.1)–(1.2) can be rewritten as














∂tφ + γdiv m = 0,

∂tm − ν1∆m − ν2∇div m + γ∇φ = G(φ, m),

(φ, m)(0, z) = (φ0, m0)(z),

(1.3)

where φ0(z) = γρ0(z) and

G(φ, m) = − div

(

γ

φ + γ
m ⊗ m

)

− ν1∆

(

φ

φ + γ
m

)

− ν2∇div

(

φ

φ + γ
m

)

−∇

{

φ2

γ2

∫ 1

0

(1 − θ)2p′′
(

1 +
θφ

γ

)

dθ

}

.

We now introduce some notations for later uses. The Fourier transformation of the function

f ∈ L1(Tℓ × R
3−ℓ) is denoted by

F(f)(k, ξ) = f̂(k, ξ) =

∫

Tℓ

∫

R3−ℓ

e−i(k·x+ξ·y)f(x, y)dxdy,

where z = (x, y), x = (z1, · · · , zl) ∈ T
ℓ, y = (y1, · · · , y3−ℓ) = (zℓ+1, · · · , z3) ∈ R

3−ℓ, k =

(k1, · · · , kℓ) ∈ Z
ℓ, ξ = (ξ1, · · · , ξ3−ℓ) ∈ R

3−ℓ. The inverse Fourier transformation of the se-

quence {g(k, ξ)}k∈Zl is defined as

(F−1g)(z) =
1

(2π)ℓ

∑

k∈Zℓ

eik·x

∫

R3−ℓ

eiξ·yg(k, ξ)dξ.

Write the mean value of f(z) over T
ℓ as f̄(y):

f̄(y) =
1

(2π)ℓ

∫

Tℓ

f(x, y)dx.

In addition, we define

div ′v = ∂y1v1 + · · · + ∂y3−ℓ
v3−ℓ, ∇′ = (∂y1 , · · · , ∂y3−ℓ

)T , ∆′ = ∂2
y1

+ · · · + ∂2
y3−ℓ

,

where v = (v1, · · · , v3−ℓ)
T . And we denote ‖u(t, ·)‖Lp(Ω) as ‖u‖p for 1 ≤ p ≤ ∞.

For different ℓ, our main results in this article are

Theorem 1.1 For ℓ = 1, if u0 ∈ H4(T × R
2) and ‖u0‖H4∩L1 ≤ ε, then for small ε > 0,

(1.3) has a global solution u(t, z) = (φ, m)(t, z) ∈ C([0, +∞), H4(T×R
2))∩C1([0, +∞), H2(T×

R
2)) satisfying for t → +∞

‖∂k
z u‖2 = O(t−

1
2−

k
2 ), k = 0, 1, (1.4)
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