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Abstract In this article, we investigate the global stability of the wave patterns with the

superposition of viscous contact wave and rarefaction wave for the one-dimensional compress-

ible Navier-Stokes equations with a free boundary. It is shown that for the ideal polytropic

gas, the superposition of the viscous contact wave with rarefaction wave is nonlinearly stable

for the free boundary problem under the large initial perturbations for any γ > 1 with γ

being the adiabatic exponent provided that the wave strength is suitably small.
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1 Introduction

The one-dimensional compressible Navier-Stokes equations in the Eulerian coordinate read

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

ρ̃t + (ρ̃ũ)x̃ = 0,

(ρ̃ũ)t + (ρ̃ũ2 + p̃)x̃ = µũx̃x̃,
[
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ẽ+
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[
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(

ẽ+
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+ p̃ũ

]

x̃

= κθ̃x̃x̃ + µ(ũũx̃)x̃,

(1.1)
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where ũ(x̃, t) is the velocity, ρ̃(x̃, t) > 0 is the density, θ̃(x̃, t) > 0 is the absolute temperature,

p̃ = p̃(ρ̃, θ̃) is the pressure, and ẽ = ẽ(ρ̃, θ̃) is the internal energy of the gas in gas dynamics,

while µ and κ denote the viscosity and the heat-conductivity of the gas, respectively. Here, we

study the ideal polytropic gas, that is,

p̃ = Rρ̃θ̃ = Aρ̃γe
γ−1

R
s̃, ẽ = cν θ̃,

where s̃ = s̃(ρ̃, θ̃) is the entropy, γ > 1 is the adiabatic exponent, cν = R
γ−1 is the specific heat,

and both A and R are positive constants.

We consider the system (1.1) in the region x̃ > x̃(t), with the free boundary x̃ = x̃(t)

defined by










dx̃(t)

dt
= ũ(x̃(t), t), t > 0,

x̃(0) = 0,

(1.2)

and the free boundary conditions

(p̃− µũx̃)
∣

∣

x̃=x̃(t)
= p0, θ̃

∣

∣

x̃=x̃(t)
= θ− > 0, (1.3)

which means that the gas is attached at the boundary x̃ = x̃(t) with the fixed outer pressure

p0 > 0 and the prescribed temperature θ− > 0. The initial data is given by

(ρ̃, ũ, θ̃)
∣

∣

t=0
=
(

ρ̃0, ũ0, θ̃0

)

(x̃) → (ρ+, u+, θ+) as x̃→ +∞, (1.4)

where ρ+ > 0, θ+ > 0, and u+ are prescribed constants and we assume θ̃0
∣

∣

x̃=x̃(t)
= θ− as the

compatibility condition.

As it is convenient to use the Lagrangian coordinate in spatial one-dimensional case, we

transform the Eulerian coordinates (x̃, t) to the Lagrangian coordinates (x, t) by

x =

∫ x̃

x̃(t)

ρ̃(y, t)dy, t = t,

and then the free boundary value problem (1.1)–(1.4) is changed into the half space problem

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

vt − ux = 0,

ut + px = µ
(ux

v

)

x
, x > 0, t > 0,

(

e+
u2

2

)

t

+ (pu)x =

(

κ
θx

v
+ µ

uux

v

)

x

,

(1.5)

with the initial and boundary conditions






















θ|x=0 = θ−,
(

p(v, θ) − µ
ux

v

)

(0, t) = p0, t > 0,

(v, u, θ)(x, 0) = (v0, u0, θ0)(x) → (v+, u+, θ+) as x→ +∞,

(1.6)

where u(x, t) = ũ(x̃, t), θ(x, t) = θ̃(x̃, t), and v+ = ρ−1
+ ; and v = v(x, t) = ρ̃−1(x̃, t) denotes the

specific volume.
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