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Abstract We use two appropriate bounded invertible operators to define a controlled frame

with optimal frame bounds. We characterize those operators that produces Parseval con-

trolled frames also we state a way to construct nearly Parseval controlled frames. We intro-

duce a new perturbation of controlled frames to obtain new frames from a given one. Also

we reduce the distance of frames by appropriate operators and produce nearly dual frames

from two given frames which are not dual frames for each other.
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1 Introduction

Frames for Hilbert spaces were first introduced by Duffin and Schaeffer [15] in 1952 to study

some problems in nonharmonic Fourier series, reintroduced in 1986 by Daubechies, Grossman,

and Meyer [14] and popularized from then on. Today, frame theory has an abundance of ap-

plications in pure mathematics, applied mathematics, engineering, medicine and even quantum

communication. We refer to [4, 6, 7, 11, 22] for an introduction to frame theory and its ap-

plications. With the deep development of frame theory, some various generalizations of frames

were given by some authors, such as bounded quasi-projectors [16], pseudo-frames [19], frames

of subspaces (fusion frames) [1, 8, 18], oblique frames [12], etc. In 2006, a new generalization of

the frame named g-frame was introduced by Sun [23, 24] in a complex Hilbert space. G-frames

are natural generalizations of frames which cover the above generalizations of frames.

Controlled frames for spherical wavelets were introduced in [5] to get a numerically more

efficient approximation algorithm and the related theory for general frames were developed in

[3]. In this paper we characterize all operators which produces Parseval frames from a usual

frame. Also we introduce all such operators that make nearly Parseval controlled frames which

may be useful objects specially for infinite dimensional Hilbert spaces.

Throughout this paper H is a separable Hilbert space , and GL(H) denotes the set of all

bounded linear operators which have bounded inverses. It is easy to see that if S, T ∈ GL(H),
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then T ∗, T−1 and ST are also in GL(H). Let GL+(H) be the set of all positive operators in

GL(H). Also IdH denotes the identity operator on H , R is the set of real numbers. We denote

by F a sequence of vectors {fi}i∈I (I is a countable index set) in a separable Hilbert space H .

A sequence F in H is called a frame for H , if there exist constants 0 < C ≤ D < ∞ (lower

and upper frame bounds) such that

C‖f‖2 ≤
∑

i∈I

|〈f, fi〉|
2 ≤ D‖f‖2, ∀f ∈ H.

If C = D, then F is called a C-tight frame, and if C = D = 1, it is called a Parseval frame. A

Bessel sequence F is only required to fulfill the upper frame bound estimate but not necessarily

the lower estimate.

For a Bessel sequence F of elements in H we define a linear operator θF : H → ℓ2(I) by

θFf = {〈f, fi〉}i∈I , ∀f ∈ H.

If F is a frame for H , then θF is a bounded operator and is called the analysis operator of the

frame. The synthesis operator is θ∗F and satisfies

θ∗F : ℓ2(I) → H, θ∗F
(

{ai}i∈I

)

=
∑

i∈I

aifi, ∀{ai}i∈I ∈ ℓ2(I).

It is easy to see that F is a frame for H with frame bounds C, D if and only if

C‖f‖2 ≤ ‖θFf‖2
2 ≤ D‖f‖2, ∀f ∈ H.

The frame operator SFf = θ∗FθFf =
∑

i∈I

〈f, fi〉fi associated with F is a bounded, invertible,

and positive operator on H . This provides the reconstruction formulas

f = S−1
F SFf =

∑

i∈I

〈f, fi〉S
−1
F fi =

∑

i∈I

〈f, S−1
F fi〉fi.

Furthermore, CIdH ≤ SF ≤ DIdH .

2 Controlled Frames

As stated before, controlled frames with one operator as controller operator were first

introduced in [3]. Also controlled g-frames with two controller operators were studied in [21].

To get a large class of controlled g-frames it is important to use of two operators. So in this

section we introduce controlled frames with two controller operators which is a generalization

of controlled frames with one controller operator. Also we express the relation between a frame

and a controlled frame.

Definition 2.1 Let F be a family of vectors in a Hilbert space H . Let T, U ∈ GL(H).

Then F is called a frame controlled by T and U or (T, U)-controlled frame if there exist two

constants

0 < CTU ≤ DTU < ∞

such that

CTU‖f‖
2 ≤

∑

i∈I

〈f, T fi〉〈Ufi, f〉 ≤ DTU‖f‖
2, ∀f ∈ H.

We call F a Parseval (T, U)-controlled frame if CTU = DTU = 1. If only the right inequality

hold, then we call F a (T, U)-controlled Bessel sequence.
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