

Acta Mathematica Scientia 2016,36B(3):847-862

http://actams.wipm.ac.cn

PERIODIC OPTIMAL CONTROL PROBLEMS GOVERNED BY SEMILINEAR PARABOLIC EQUATIONS WITH IMPULSE CONTROL*

Qishu YAN (闫奇姝)

School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China E-mail: yanqishu@whu.edu.cn

Abstract This paper is concerned with periodic optimal control problems governed by semilinear parabolic differential equations with impulse control. Pontryagin's maximum principle is derived. The proofs rely on a unique continuation estimate at one time for a linear parabolic equation.

Key words Pontryagin's maximum principle; impulse control; semilinear parabolic equation

2010 MR Subject Classification 35K58; 49K20; 49N20

1 Introduction

Let T be a positive number and $\Omega \subset \mathbb{R}^N \ (N \geq 1)$ be a bounded domain with boundary $\partial \Omega$ of class C^2 . Let $\tau \in (0,T)$ and ω be a nonempty open subset of Ω . Write χ_{ω} for the characteristic function of ω . Consider the following semilinear parabolic equation with impulse control:

$$\begin{cases} \partial_t y_1 - \Delta y_1 + f(x, t, y_1) = 0 & \text{in } \Omega \times (0, \tau), \\ \partial_t y_2 - \Delta y_2 + f(x, t, y_2) = 0 & \text{in } \Omega \times (\tau, T), \\ y_1 = 0 & \text{on } \partial\Omega \times (0, \tau), \\ y_2 = 0 & \text{on } \partial\Omega \times (\tau, T), \\ y_2(\tau) = y_1(\tau) + \chi_{\omega} u & \text{in } \Omega, \end{cases}$$

$$(1.1)$$

where $u \in L^2(\Omega)$. Throughout this paper, we assume that $f: \Omega \times (0,T) \times \mathbb{R} \to \mathbb{R}$ satisfies:

- (H₁) For each $r \in \mathbb{R}$, $f(\cdot, \cdot, r)$ is a measurable function in $\Omega \times (0, T)$. $f(\cdot, \cdot, 0) \in L^2(\Omega \times (0, T))$.
- (H₂) For a.e. $(x,t) \in \Omega \times (0,T)$, $f'_r(x,t,\cdot)$ is continuous. Moreover, there exists a positive constant L so that

$$|f'_r(x,t,r)| \leq L$$
 for a.e. $(x,t) \in \Omega \times (0,T)$ and $r \in \mathbb{R}$.

^{*}Received February 26, 2015; November 23, 2015. This work was partially supported by the National Science Foundation of China (11371285).

Denote

$$Y \triangleq W^{1,2}(0,\tau;H^{-1}(\Omega)) \cap L^2(0,\tau;H^1_0(\Omega)) \times W^{1,2}(\tau,T;H^{-1}(\Omega)) \cap L^2(\tau,T;H^1_0(\Omega)).$$

It is well known that for each $u \in L^2(\Omega)$ and $y_0 \in L^2(\Omega)$, (1.1) has a unique solution

$$(y_1(\cdot; y_0), y_2(\cdot; y_0, u)) \in Y \subset C([0, \tau]; L^2(\Omega)) \times C([\tau, T]; L^2(\Omega))$$

satisfying the initial condition $y_1(0; y_0) = y_0$.

Consider the cost functional $J: Y \times L^2(\Omega) \to \mathbb{R}^+ \triangleq [0, +\infty)$, defined by

$$J(y_1, y_2, u) \triangleq \int_0^{\tau} g(t, y_1(t)) dt + \int_{\tau}^{T} g(t, y_2(t)) dt + \frac{1}{2} ||u||_{L^2(\Omega)}^2,$$

where we assume that

(H₃) The functional $g: [0,T] \times L^2(\Omega) \to \mathbb{R}^+$ is measurable in $t, g(\cdot,0) \in L^2(0,T)$ and for every $\delta > 0$, there exists a $C_{\delta} > 0$ so that

$$|g(t,y) - g(t,z)| \le C_{\delta} ||y - z||_{L^{2}(\Omega)}, \quad \forall t \in [0,T],$$

 $||y||_{L^{2}(\Omega)} + ||z||_{L^{2}(\Omega)} \le \delta.$

In this paper, we shall study the following optimal control problem:

(P)
$$\inf J(y_1, y_2, u)$$

over all $(y_1, y_2, u) \in Y \times L^2(\Omega)$, where (y_1, y_2, u) satisfies equation (1.1) and the state constraint condition $y_1(0) = y_2(T)$.

The main result of this paper is as follows.

Theorem 1.1 Suppose that (H_1) , (H_2) and (H_3) hold. Let (y_1^*, y_2^*, u^*) be optimal for problem (P). Then there exists $p \in W^{1,2}(0, T; H^{-1}(\Omega)) \cap L^2(0, T; H_0^1(\Omega))$ so that

$$\begin{cases} \partial_t p + \Delta p - f_y'(x, t, y^*) p \in \partial g(t, y^*) & \text{in } \Omega \times (0, T), \\ p = 0 & \text{on } \partial \Omega \times (0, T), \\ p(0) = p(T) & \text{in } \Omega \end{cases}$$

and

$$\chi_{\omega} p(\tau) = u^*,$$

here

$$y^*(t) \triangleq \begin{cases} y_1^*(t), & t \in [0, \tau), \\ y_2^*(t), & t \in [\tau, T] \end{cases}$$

and $\partial g(t, y^*)$ denotes the generalized derivative to the second variable at y^* in the sense of Clarke (see page 27 in [1]).

Remark 1.2 When

$$f(x,t,r) = a(x,t)r$$
 and $||a||_{L^{\infty}(\Omega \times (0,T))} < \lambda_1 \triangleq \inf_{\substack{y \in H_0^1(\Omega) \\ y \neq 0}} \frac{||\nabla y||_{L^2(\Omega)}}{||y||_{L^2(\Omega)}},$

we can easily check that for each $u \in L^2(\Omega)$, there exists a unique $z_0 \in L^2(\Omega)$ so that $y_1(0; z_0) = y_2(T; z_0, u)$.

Download English Version:

https://daneshyari.com/en/article/4663388

Download Persian Version:

https://daneshyari.com/article/4663388

<u>Daneshyari.com</u>