Available online at www.sciencedirect.com

ScienceDirect o maobile

ELSEVIER Pervasive and Mobile Computing 4 (2008) 481-505

www.elsevier.com/locate/pmc

Composing software services in the pervasive
computing environment: Languages or APIs?*

Jon Robinson™, Ian Wakeman, Dan Chalmers

Department of Informatics, University of Sussex, Brighton, UK

Received 30 October 2006; received in revised form 7 December 2007; accepted 2 January 2008
Available online 6 January 2008

Abstract

The pervasive computing environment will be composed of heterogeneous services. In this work,
we have explored how a domain specific language for service composition can be implemented
to capture the common design patterns for service composition, yet still retain a comparable
performance to other systems written in mainstream languages such as Java. In particular, we have
proposed the use of the method delegation design pattern, the resolution of service bindings through
the use of dynamically adjustable characteristics and the late binding of services as key features in
simplifying the service composition task. These are realised through the Scooby language, and the
approach is compared to the use of APIs to define adaptable services.
© 2008 Elsevier B.V. All rights reserved.

Keywords: Pervasive computing; Programming languages; Performance evaluation

1. Introduction
In this paper we present the Scooby Service Composition system.! The main
contribution of this research is a service composition language for pervasive computing

* Funded under the EPSRC projects Nathab GR/S26408/01 and TrustUs GR/S69016/01.
* Corresponding author.
E-mail addresses: j.r.robinson@sussex.ac.uk (J. Robinson), ianw @sussex.ac.uk (I. Wakeman),
d.chalmers @sussex.ac.uk (D. Chalmers).
URL: http://www.informatics.sussex.ac.uk/softsys/ (J. Robinson).

1 Scooby is our acronym for Service Composition Objects Ordered By You.

1574-1192/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.pmcj.2008.01.001


http://www.elsevier.com/locate/pmc
mailto:j.r.robinson@sussex.ac.uk
mailto:ianw@sussex.ac.uk
mailto:d.chalmers@sussex.ac.uk
http://www.informatics.sussex.ac.uk/softsys/
http://www.informatics.sussex.ac.uk/softsys/
http://www.informatics.sussex.ac.uk/softsys/
http://www.informatics.sussex.ac.uk/softsys/
http://www.informatics.sussex.ac.uk/softsys/
http://www.informatics.sussex.ac.uk/softsys/
http://www.informatics.sussex.ac.uk/softsys/
http://dx.doi.org/10.1016/j.pmcj.2008.01.001

482 J. Robinson et al. / Pervasive and Mobile Computing 4 (2008) 481-505

environments. Past research in distributed systems suggests that separating service and
configuration is a viable approach [1,2], but pervasive computing provides a new set of
challenges because of connectivity, the need to take account of context in choosing services
and the dynamicity of the services within any pervasive computing environment. Scooby
attempts to provide programming abstractions and design patterns that make it easy for
programmers to compose new services that are context-aware, and provides a platform to
explore the following questions: how do we combine services which have been produced
by different developers? and How can we compose services to meet the demands of users?.

1.1. Our research goals

One of the goals of our research has been to determine if the coupling of a domain
specific language and middleware is an effective way to enable programmers to create
services and compositions. In Fig. 1 we outline a basic Scooby service which provides the
ability to route messages to different devices depending on their co-location with the user.
The current user’s location is used to dynamically rebind to the various output services.
When the stock service provides a notification the event handling code routes this to the
most appropriate output at that time. The example highlights the simplicity of the Scooby
domain specific language, when considering the alternative of programming such a service
in another high-level language, such as Java with the use of APIs to access middleware
functionality. In Sections 4 and 5 we describe the Scooby language and constructs in more
detail.

There are a number of technologies that can provide the building blocks towards such
a system, including service discovery, remote invocation and messaging systems, such as
CORBA and J2EE. However, we have opted to take the approach where we are not directly
reliant on such technologies as we are targeting the system towards low-powered devices
with limited processing power, such as PDAs and devices that can be embedded within
home appliances. When taking the nature of the environment and the limited scope of the
devices available into account, using heavy-weight technologies is not the most practical or
viable way forward. Instead, we have chosen to utilise the publish/subscribe paradigm as
the method for relaying event information between devices, using the content-based router
Elvin [19]. This provides a light-weight communication medium on which we can then
build our middleware. One of the characteristics of a pervasive computing environment
is the ad hoc combination of devices and intermittent and unpredictable availability of
devices. There is no guarantee of the device being available over the course of time due to
a number of physical reasons such as network disruption, the device dropping outside of
the influence of a wireless network and power loss/power saving modes. The adoption of a
publish/subscribe mechanism therefore would not have an impact on the environment when
taking into account the lack of message guarantee. Additionally, the utilisation of key-value
pairs available within publish/subscribe is heavily relied upon when disseminating service
characteristics.

The Scooby language acts as the medium in which a user can compose services.
As the language and resultant compiler are lightweight, much of the complexity of
implementation is pushed down to the middleware level instead of the language. If there
were to be millions of services and thousands of events per second, then such an approach



Download English Version:

https://daneshyari.com/en/article/46634 1

Download Persian Version:

https://daneshyari.com/article/46634 1

Daneshyari.com


https://daneshyari.com/en/article/466341
https://daneshyari.com/article/466341
https://daneshyari.com

