A SPECIAL MODULUS OF CONTINUITY AND THE K－FUNCTIONAL＊

Nadezhda DOLMATOVA
Institute of Mathematics，University of Wroctaw，pl．Grunwaldzki 2／4，50－384 Wroctaw，Poland
E－mail：dolmat＠math．uni．wroc．pl

Abstract

We consider the questions connected with the approximation of a real continuous 1－periodic functions and give a new proof of the equivalence of the special Boman－Shapiro modulus of continuity with Peetre＇s K－functional．We also prove Jackson＇s inequality for the approximation by trigonometric polynomials．

Key words modulus of continuity；K－functional；Jackson＇s theorem
2010 MR Subject Classification 42A10；41A17；41A50

1 Introduction

Denote by $C(\mathbb{T}), \mathbb{T}=\mathbb{R} / \mathbb{Z}$ the space of real continuous 1 －periodic functions f with the uniform norm

$$
\|f\|=\sup _{u \in \mathbb{T}}|f(u)| .
$$

The derivative operator is denoted by the symbol D ，and the space of functions f with $D^{2} f \in$ $C(\mathbb{T})$ will be denoted by $C^{2}(\mathbb{T})$ ．

Let $L(\mathbb{T})$ be the space of measurable，integrable functions with norm

$$
\|f\|_{1}=\int_{\mathbb{T}}|f(u)| \mathrm{d} u
$$

and let T_{n-1} be the set of real trigonometric 1－periodic polynomials τ of degree at most $n-1$ ：

$$
\tau(t):=\sum_{j=-n+1}^{n-1} \alpha_{j} \exp (2 \pi i j t), \quad \alpha_{j}=\bar{\alpha}_{-j}
$$

For $f \in C(\mathbb{T})$ ，we denote by $E_{n-1}(f)$ the value of the best approximation of f by real trigonometric polynomials of degree at most $n-1$ ，

$$
E_{n-1}(f):=\inf _{\tau \in T_{n-1}}\|f-\tau\|
$$

We will use the convolution of periodic functions f with positive functions g ，with finite support．In this case，the convolution can be understood in the following sense：

$$
(f * g)(t):=\int_{\mathbb{R}} f(u) g(t-u) \mathrm{d} u
$$

[^0]We denote by $\chi_{h}^{k}, k=1,2, \cdots$ the convolution powers of the normalized characteristic function of the interval $(-h / 2, h / 2), h>0$:

$$
\chi_{h}^{k}:=\chi_{h}^{k-1} * \chi_{h}, \quad \chi_{h}(t):= \begin{cases}\frac{1}{h} & t \in(-h / 2, h / 2) \\ 0, & t \notin(-h / 2, h / 2)\end{cases}
$$

In particular,

$$
\chi_{h}^{2}(t)= \begin{cases}\frac{1}{h}\left(1-\frac{|t|}{h}\right), & t \in(-h, h) \\ 0, & t \notin(-h, h)\end{cases}
$$

The functions χ_{h}^{k} are the cardinal B-splines with support $[-k h / 2, k h / 2]$ and $\left\|\chi_{h}^{k}\right\|_{1}=1$.
We will use the following moduli of continuity (see [1, 2, 9])

$$
\begin{aligned}
W_{2}\left(f, \chi_{h}^{k}\right) & :=\left\|f-f * \chi_{h}^{k}\right\| \\
W_{2}^{*}\left(f, \chi_{h}^{k}\right) & :=\sup _{0<u \leq h} W_{2}\left(f, \chi_{u}^{k}\right)
\end{aligned}
$$

They are special cases of the Boman-Shapiro moduli of continuity (see $[3,4,11]$).
This paper is the continuation of [1]. The main result of [1] is the following Jackson inequality for the uniform approximation of continuous 1-periodic functions by trigonometric polynomials.

Let f be a continuous 1-periodic function and $n \in \mathbb{N}, h=\alpha /(2 n), \alpha>2 / \pi$. Then the following inequality holds

$$
\begin{equation*}
E_{n-1}(f) \leq(\sec 1 / \alpha+\tan 1 / \alpha) W_{2}\left(f, \chi_{h}\right) \tag{1.1}
\end{equation*}
$$

The estimate is exact for $\alpha=1,3, \cdots$.
In [1] the following sharp Bernstein-Nikolsky-Stechkin inequality for $\tau \in T_{n}$ was also obtained.

Let τ be a real trigonometric 1-periodic polynomial of degree at most $n-1$ for $n \in \mathbb{N}$, and suppose $h \in(0,1 / n]$. Then

$$
\begin{equation*}
\left\|D^{2} \tau\right\| \leq(2 \pi n)^{2} W_{2}\left(c_{n}, \chi_{h}\right)^{-1} W_{2}\left(\tau, \chi_{h}\right), \quad c_{n}(t):=\cos (2 \pi n t) \tag{1.2}
\end{equation*}
$$

The Jackson inequality (1.1) and the Bernstein-Nikolsky-Stechkin estimate (1.2) allowed us to prove the equivalence of a special modulus of continuity and the second Peetre's K-functional [1].

Let $h \in(0,1]$. Then

$$
\begin{equation*}
1 / 4 K_{2}(f, h /(4 \sqrt{6})) \leq W_{2}\left(f, \chi_{h}\right) \leq 4 K_{2}(f, h /(4 \sqrt{6})) \tag{1.3}
\end{equation*}
$$

The equivalence of moduli of this type and the K-functional is known (see [7] and [14]). Here we give a new form of this equivalence with the calculation of the constants. We present a new simple proof of the estimates of the type (1.3) with better constants (Theorem 3.1). Theorem 3.1 and a new construction in the proof of Theorem 3.1 are the main results of the present paper. Further, we introduce a generalized K-functional which is related to the new approach to the direct theorems of approximation theory $[1,9]$ and give the analogue of Theorem 3.1 for it (Theorem 3.2). We also give a proof of the estimates of type (1.1) which hold for $\alpha>0$ and better than (1.1) for $\alpha<0.778$ (Theorem 4.1).

https://daneshyari.com/en/article/4663421

Download Persian Version:

https://daneshyari.com/article/4663421

Daneshyari.com

[^0]: ＊Received September 30，2013；revised October 22， 2015.

