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Abstract We consider a class of nonlinear kinetic Fokker-Planck equations modeling quan-

tum particles which obey the Bose-Einstein and Fermi-Dirac statistics, respectively. We

establish the existence and convergence rate to the steady state of global classical solution to

such kind of equations around the steady state.
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1 Introduction

In this paper we are interested in the following quantum kinetic Fokker-Planck equation:

∂tf + p · ∇x(f + σκf2) = ∇p · (pf(1 + κf) + ∇pf) (1.1)

with initial data f(0, x, p) = f0(x, p). Here σ = 1, or σ = 0 and f(t, x, p) denotes the particles

distribution function on phase space R3
x × R3

p for any time t ≥ 0.

Equation (1.1) with σ = 1 was introduced in [18], for the classical particles obeying an

exclusion principle. A formal derivation from the generalized quantum Boltzmann equation

and the Uehling-Uhlenbeck equation was given in [16, 26]. Different physical applications can

be founded in [13, 17] and the references therein. Notice that κ = −1 corresponds to the

Fermions and κ = 1 to the Bosons. For κ = 0, equation (1.1) simplifies to the classical linear

Fokker-Planck equation. Equation (1.1) with σ = 0 was proposed in [27, 28] to describe self-

gravitating particles and the formation of Bose-Einstein condensates in a kinetic framework.
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The purpose of this paper is to construct global classical solutions and large time behavior

of global solution to equation (1.1) near an steady state, which is given by

f∞(p) =
1

exp
(

|p|2

2 + θ
)
− κ

. (1.2)

Distribution (1.2) is the well-known Fermi-Dirac equilibrium distribution for κ = −1. For

κ = 1, f∞(p) is the so-called regular Bose-Einstein distribution. If κ = 0, f∞(p) simplifies to

the classical Maxwellian. In this paper we require θ > 0 in (1.2) and we see [5, 11, 25] for a

detailed discussion.

We define the perturbation g(t, x, p) around this steady state by

f = f∞ +
√

µ∞g, (1.3)

where µ∞ = f∞ + κf2
∞. Then equation (1.1) yields the following equation for the perturbation

g(t, x, p):

∂tg + (1 + 2σκf∞)p · ∇xg + Lg = Q(g) (1.4)

with initial data g(0, x, p) = g0(x, p). Here the linearized collision operator L is given by

Lg = −
1

√
µ∞

∇p ·
(
∇p(g

√
µ∞) + pη∞g

√
µ∞

)

= −∆pg − g
(3

2
η∞ − |p|2

(1

4
+ 2κµ∞

))
, (1.5)

where η∞ = 1 + 2κf∞. The quadratic remainder Q(g) is

Q(g) =
κ

√
µ∞

(
∇p · (pµ∞g2) − σµ∞p · ∇x(g2)

)
. (1.6)

In this paper, the following notations are used. Let α and β be α = [α1, α2, α3] and

β = [β1, β2, β3], respectively. Denote

∂α
β ≡ ∂α1

x1
∂α2

x2
∂α3

x3
∂β1

p1
∂β2

p2
∂β3

p3
.

If each component of β is not greater than corresponding one of β, we use the standard notation

β ≤ β. And β < β means that β ≤ β and |β| < |β|. Cβ̄
β is the usual binomial coefficient. For

the study of the time decay rate, the space Zq = L2(R3
p; L

q(R3
x)) is used with its norm defined

by

‖f‖Zq
=

( ∫

R3

( ∫

R3

|f(x, p)|qdx

) 2
q

dp

) 1
2

.

We will use 〈·, ·〉 to denote the standard L2 inner product in R3
p, and (·, ·) for the one in R3

x×R3
p.

| · |2 denotes the L2 norm in R3
p and ‖ · ‖ to denote the L2 norms in R3

x × R3
p. From now on,

C or c denotes a generic positive constant which may vary from line to line.

First note that L is self-adjoint on L2(R3
p) and by a simple calculation one has

〈Lg, g〉 =

∫

R3

∣∣∣∣∇pg +
p

2
η∞g

∣∣∣∣
2

dp =

∫

R3

∣∣∣∣∇p

(
g

√
µ∞

)∣∣∣∣
2

µ∞dp. (1.7)

Thus the kernel of positive operator L is given by

N = span{
√

µ∞}. (1.8)
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