

Available online at www.sciencedirect.com

http://actams.wipm.ac.cn

SOLUTIONS TO NONLINEAR ELLIPTIC EQUATIONS WITH A GRADIENT*

Ying WANG (王影)

School of Mathematics and Information Science, North China University of Water Resources and Electric Power, Zhengzhou 450011, China E-mail: feelyeey@163.com

Mingxin WANG (王明新)

Natural Science Research Center, Harbin Institute of Technology, Harbin 150080, China E-mail: mxwang@hit.edu.cn

Abstract In this article, we consider existence and nonexistence of solutions to problem

$$\begin{cases} -\Delta_p u + g(x, u) |\nabla u|^p = f & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega \end{cases}$$
(0.1)

with 1 , where <math>f is a positive measurable function which is bounded away from 0 in Ω , and the domain Ω is a smooth bounded open set in $\mathbb{R}^N (N \ge 2)$. Especially, under the condition that $g(x,s) = 1/|s|^{\alpha}$ ($\alpha > 0$) is singular at s = 0, we obtain that $\alpha < p$ is necessary and sufficient for the existence of solutions in $W_0^{1,p}(\Omega)$ to problem (0.1) when f is sufficiently regular.

Key words quasilinear elliptic equations; existence and nonexistence; gradient terms; singular weights

2010 MR Subject Classification 35D05; 35D10; 35J92; 46E30

1 Introduction

In this work, we study existence and nonexistence of solutions to the problem

$$\begin{cases} -\Delta_p u + g(x, u) |\nabla u|^p = f & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$
(1.1)

where $1 , <math>\Omega \subset \mathbb{R}^N$ is a smooth bounded domain, and the operator Δ_p stands for the *p*-Laplacian defined by $\Delta_p u = \operatorname{div}(|\nabla u|^{p-2}\nabla u)$. Throughout this paper, we assume that for any compact subset $\omega \subset \Omega$, there exists a positive constant f_{ω} such that

$$f \ge f_{\omega} \quad \text{in } \omega. \tag{1.2}$$

^{*} Received April 8, 2014; revised April 25, 2015. This research is supported by the Natural Science Foundation of Henan Province (15A110050).

For the problem

$$\begin{cases} -\Delta_p u + g(x, u) |\nabla u|^q = f & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

where $1 \leq q \leq p$, $g(x, u) \in L^1(\mathbb{R})$, and the data f in suitable Lebesgue spaces, has been exhaustively studied. We refer the readers to [1-4] and the references therein for semilinear elliptic problem, and to [5-15] and the references therein for quasilinear elliptic problem. If $g(x, u) = 1/|u|^{\alpha}$ with $\alpha > 0$ is singular at u = 0, the existence of solutions to (1.1) with p = 2has been obtained in [16-18] for $0 < \alpha \leq 1$, and the authors in [19] have proved that $\alpha < 2$ is necessary and sufficient for the existence of solutions in $H_0^1(\Omega)$ for every f with sufficient regularity and satisfying (1.2).

In this article, we extend the results of [19] to general case p > 1. That is, we consider that g(x, u) is singular at u = 0 for a.e. $x \in \Omega$, and obtain existence and nonexistence of solutions to problem (1.1). Here is our main result.

Theorem 1.1 Suppose p > 1, $f \in L^1(\Omega)$ such that (1.2) holds. Let $h : (0, +\infty) \to [0, +\infty)$ be a continuous nonnegative function which is nonincreasing in a neighborhood of 0, and assume that

$$\lim_{s \to 0^+} \int_s^1 h(t)^{1/p} \mathrm{d}t < +\infty.$$
(1.3)

If

$$0 \le g(x,s) \le h(s) \text{ for a.e. } x \in \Omega \text{ and every } s > 0, \tag{1.4}$$

then problem (1.1) admits a positive solution in $W_0^{1,\sigma}(\Omega)$ for any $\max\{1, p-1\} \le \sigma < \frac{N(p-1)}{N-1}$. Furthermore, if there exist constants $s_0 > 0$ and $g_0 > 0$ such that

$$g(x,s) \ge g_0, \quad \forall x \in \Omega, \ \forall s \ge s_0, \tag{1.5}$$

then the solution belongs to $W^{1,p}(\Omega)$.

2 Preliminaries

Let $\bar{p} = \max\{1, p-1\}$, we call $u \in W_0^{1,\bar{p}}(\Omega)$ is a positive solution of problem (1.1), means that u > 0 in Ω , $g(x, u) |\nabla u|^p \in L^1(\Omega)$, and

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla \psi dx + \int_{\Omega} g(x, u) |\nabla u|^{p} \psi dx = \int_{\Omega} f \psi dx, \quad \forall \psi \in C_{c}^{1}(\Omega).$$

If $u \in W_0^{1,p}(\Omega)$ is a solution of problem (1.1), then we have

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla \psi dx + \int_{\Omega} g(x, u) |\nabla u|^{p} \psi dx = \int_{\Omega} f \psi dx, \quad \forall \psi \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega).$$

To obtain the existence of solutions to problem (1.1), we need to study the behavior of g(x, u) at the neighborhood of u = 0. The following result shows that the solution u is bounded below away from 0 in every compact subset of Ω , and hence, we conclude that g(x, u) is bounded in every compact subset contained in Ω , if u is bounded.

Download English Version:

https://daneshyari.com/en/article/4663452

Download Persian Version:

https://daneshyari.com/article/4663452

Daneshyari.com