

Available online at www.sciencedirect.com

http://actams.wipm.ac.cn

NORMAL FAMILIES OF MEROMORPHIC FUNCTIONS WITH SHARED VALUES*

Wei CHEN (陈玮)

Department of Mathematics, Shandong University, Jinan 250100, China E-mail: weichensdu@126.com

Honggen TIAN (田宏根)

School of Mathematics Science, Xinjiang Normal University, Urumqi 830054, China E-mail: tianhg@xjnu.edu.cn

Peichu HU (扈培础)[†]

Department of Mathematics, Shandong University, Jinan 250100, China E-mail: pchu@sdu.edu.cn

Abstract We obtain some normality criteria of families of meromorphic functions sharing values related to Hayman conjecture, which improves some earlier related results.

Key words meromorphic function; shared value; normal family

2010 MR Subject Classification 30D30; 30D45

1 Introduction and Main Results

Let \mathbb{C} be the set of complex numbers and let D be a domain in \mathbb{C} , which means that Dis a connected non-empty open subset of \mathbb{C} . Let $\mathcal{M}(D)$ be the set of meromorphic functions defined in D. For $\{f,g\} \subset \mathcal{M}(D), \{a,b\} \subset \mathbb{P}^1 = \mathbb{C} \cup \{\infty\}$, we will write $f = a \Rightarrow g = b$ (resp., $f = a \Leftrightarrow g = b$) if $f^{-1}(a) \subset g^{-1}(b)$ (resp., $f^{-1}(a) = g^{-1}(b)$), and say that f and g share a IM (ignoring multiplicities) if $f^{-1}(a) = g^{-1}(a)$ (see [12]).

Let \mathcal{F} be a family in $\mathcal{M}(D)$. Montel first obtained a famous normal criterion which states that \mathcal{F} is normal in D if each element of \mathcal{F} omits three distinct values a, b, c in \mathbb{P}^1 , where the family \mathcal{F} is said to be normal in D if any sequence of \mathcal{F} must contain a subsequence which locally uniformly spherically converges to a meromorphic function or ∞ in D (see [7, 12]).

Later, Carathéodory [2] relaxed the fixed values a, b, c in Montel's theorem to "wandering" constants a_f, b_f, c_f depending on $f \in \mathcal{F}$ such that their spherical distances have a uniform lower bound ε , that is,

(i) $\min\{\sigma(a_f, b_f), \sigma(a_f, c_f), \sigma(b_f, c_f)\} \ge \varepsilon$ for some positive real number ε .

^{*}Received November 17, 2014; revised January 23, 2015. The second author was supported by Nature Science Foundation of China (11461070). The third author was supported by Nature Science Foundation of China (11271227); PCSIRT (IRT1264).

[†]Corresponding author: Peichu HU.

The definition of the spherical distance $\sigma(x, y)$ between $x \in \mathbb{P}^1$ and $y \in \mathbb{P}^1$ can be found in [1].

According to the idea of Carathéodory, Singh and Singh [13] generated a result of Pang and Zalcman [11] by proving that \mathcal{F} is normal in D if each $f \in \mathcal{F}$ satisfies $f = 0 \Leftrightarrow f' = 0$ and $f = c_f \Leftrightarrow f' = b_f$, where c_f, b_f are nonzero complex numbers such that spherical distances of $0, b_f, c_f$ have a uniform lower bound ε , that is,

(i)' $\min\{\sigma(0, b_f), \sigma(0, c_f), \sigma(b_f, c_f)\} \ge \varepsilon$ for some positive real number ε , and such that

(ii) $\frac{b_f}{c_f}$ is independent of f.

Moreover, Grahl [6] corrected a gap of the proof of another similar result in the paper of Singh and Singh [13].

We improve the normality criteria related to normality conjecture due to Hayman [7] which was proved by several authors (see [3, 5, 9]) based on the ideas of shared values as follows:

Theorem 1.1 Let *n* be a positive integer and let \mathcal{F} be a family in $\mathcal{M}(D)$ such that each element *f* in \mathcal{F} satisfies $f^n f' = \alpha_f \Leftrightarrow f' = b_f$ for nonzero complex numbers α_f, b_f . If there exists $c_f \in \mathbb{C}$ satisfying $c_f^{n+1} = \alpha_f$ for each $f \in \mathcal{F}$ such that (i)' and (ii) hold, then \mathcal{F} is normal in *D*.

Obviously, Theorem 1.1 implies directly the following fact:

Corollary 1.2 Let *n* be a positive integer and take nonzero complex numbers α, b with $\alpha^{\frac{1}{n+1}} \neq b$. Then a family \mathcal{F} in $\mathcal{M}(D)$ is normal in *D* if each $f \in \mathcal{F}$ satisfies $f^n f' = \alpha \Leftrightarrow f' = b$.

By weakening the conditions in Theorem 1.1, we can obtain the following result:

Theorem 1.3 Let *n* be a positive integer and let \mathcal{F} be a family in $\mathcal{M}(D)$ such that each element *f* in \mathcal{F} satisfies

$$f^n f' = \alpha_f \Rightarrow f' = b_f, f' = a_f \Rightarrow f = \beta_f$$

for nonzero complex numbers $a_f, b_f, \alpha_f, \beta_f$. If there exists $c_f \in \mathbb{C}$ satisfying $c_f^{n+1} = \alpha_f$ for each $f \in \mathcal{F}$ such that (i) holds and such that

(ii)' $\frac{a_f}{c_f}, \frac{b_f}{c_f}, \frac{\beta_f}{c_f}$ are independent of f respectively, then \mathcal{F} is normal in D.

Corollary 1.4 Let *n* be a positive integer and take four nonzero complex numbers a, b, α , β such that a, b, c are distinct with $c^{n+1} = \alpha$. Then a family \mathcal{F} in $\mathcal{M}(D)$ is normal in D if each $f \in \mathcal{F}$ satisfies $f^n f' = \alpha \Rightarrow f' = b$ and $f' = a \Rightarrow f = \beta$.

2 Some Lemmas

In order to prove our results, we need the following lemmas.

Lemma 2.1 (see [10, 14]) Let k be a positive integer and let \mathcal{F} be a family in $\mathcal{M}(D)$ such that each $f \in \mathcal{F}$ has only zeros of multiplicity at least k. If \mathcal{F} is not normal at $z_0 \in D$, then for each real number α with $-1 < \alpha < k$, there exist a sequence $\{z_n\}$ in D converging to z_0 , a sequence $\{\rho_n\}$ of positive numbers converging to 0, and a sequence $\{f_n\}$ in \mathcal{F} such that functions $g_n(\zeta) = \rho_n^{-\alpha} f_n(z_n + \rho_n \zeta)$ locally uniformly converge to a nonconstant meromorphic function $g(\zeta)$ in \mathbb{C} with respect to the spherical metric in \mathbb{P}^1 , which further satisfies an estimate

Download English Version:

https://daneshyari.com/en/article/4663476

Download Persian Version:

https://daneshyari.com/article/4663476

Daneshyari.com