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a b s t r a c t

Compressive sensing (CS) is a sampling technique designed for reducing the complexity
of sparse data acquisition. One of the major obstacles for practical deployment of CS
techniques is the signal reconstruction time and the high storage cost of random sensing
matrices. We propose a new structured compressive sensing scheme, based on codes of
graphs, that allows for a joint design of structured sensing matrices and logarithmic-
complexity reconstruction algorithms. The compressive sensing matrices can be shown
to offer asymptotically optimal performance when used in combination with orthogonal
matching pursuit (OMP)methods. For reduced-complexity greedy reconstruction schemes,
we propose a new family of list-decoding belief propagation algorithms, as well as
reinforced and multiple-basis belief propagation (BP) algorithms. Our simulation results
indicate that reinforced BP CS schemes offer very good complexity–performance tradeoffs
for very sparse signal vectors.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Compressive sensing (CS) has received significant at-
tention due to various applications in signal processing,
networking, MRI data acquisition, bioinformatics, and re-
mote sensing [1]. CS is a sampling technique for com-
pressible and/or K -sparse signals, i.e., signals that can be
represented by K ≪ N significant coefficients over an N-
dimensional basis. Sampling of a K -sparse, discrete-time
signal x of dimension N is accomplished by computing a
measurement vector, y, that consists ofm ≪ N linear pro-
jections, i.e.,

y = 8x.

Here, 8 represents anm × N matrix, usually over the field
of real numbers [2]. Although the reconstruction of the
signal x ∈ RN from the possibly noisy random projections
is an ill-posed task, the prior knowledge of signal sparsity
allows for recovering x in polynomial time using m ≪ N
observations only. If the reconstruction problem is cast as
an ℓ0 minimization problem [3], it can be shown that, in
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order to reconstruct a K -sparse signal x, ℓ0 minimization
requires only m = 2K random projections. In this setting,
it is assumed that the signal and the measurements are
noise free. Unfortunately, the ℓ0 optimization problem
is a combinatorial problem that for general instances of
sensing is NP-hard. The work by Donoho and Candes
et al. [1,2,4,5] demonstrated that CS reconstruction is a
polynomial time problem—conditioned on the constraint
that more than 2K measurements are used. The key idea
behind their approach is that it is not necessary to resort
to ℓ0 optimization to recover x from the under-determined
inverse problem: a tractable ℓ1 optimization, based on
linear programming (LP) techniques, yields an equivalent
solution provided that the sensing matrix 8 satisfies the
so-called restricted isometry property (RIP), with a constant
RIP parameter.

While LP techniques play an important role in
designing computationally efficient CS decoders, their
complexity renders them highly impractical for many ap-
plications. In such cases, the need for fast reconstruc-
tion algorithms – preferably operating in time linear in N ,
and without significant performance loss compared to LP
methods – is of critical importance. A commonapproach to
mitigating these problems is to increase the number of
measurements and to use greedy reconstruction methods.
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Several classes of low-complexity reconstruction tech-
niques have been put forward as alternatives to linear
programming (LP) recovery, including group testingmeth-
ods [6], pursuit strategies such as orthogonal matching
pursuit (OMP), subspace pursuit (SP) and compressive
sampling matching pursuit (CoSaMP) [7–10], and coding-
theoretic techniques [11–13].

We focus our attention on two intertwined problems
related to low-complexity CS reconstruction techniques.
The first problem is concerned with designing structured
matrices that provide RIP-type performance guarantees,
since such matrices have low storage complexity and may
potentially yield to faster reconstruction approaches. The
second problem is concerned with how to most efficiently
exploit the structure of the sensing matrix in order to
further reduce the reconstruction complexity of greedy-
like methods that use correlation maximization as one of
their key steps. The solution we propose addresses both
these issues, and can be succinctly described as follows.

It is known that random Bernoulli matrices – matri-
ces with i.i.d. Bernoulli(1/2) distributed entries – have
constant RIP parameters with a number of measurements
proportional to K log(N/K) [1,5]. This number of mea-
surements suffices for exact reconstruction of K -sparse
signals using LP methods. One property of Bernoulli ma-
trices is that, for sufficiently large dimensions, the fraction
of the symbols+1 and−1 per row and per column is close
to one half. Furthermore, a similar property holds for any
sufficiently large submatrix of the matrix. Consequently,
one approach for designing structured compressive sens-
ingmay be reduced tomimicking this property of Bernoulli
matrices and then showing that the matrices indeed have
a constant RIP parameter.

This task can be accomplished via linear error-
correcting coding. Due to the linear structure of the code,
using codewords of a binary linear code with zeros re-
placed by +1s and ones by −1s as columns of the matrix
ensures the row-weight balancing property. Furthermore,
if the weight of the codewords is chosen close to half of the
codelength, similar concentration results will hold for the
columns of the sensing matrix.

The idea of using linear error-correcting codes was first
proposed in [14], where encodings of Reed–Muller code-
wordswere used for columns of a compressive sensingma-
trix [15,16]. The authors proposed independently a similar
framework based on low-density parity-check codes [17]
in [18], and some follow-up results on this work were re-
ported in [19]. Another approach for constructing sensing
matrices by trying to match their distribution of singular
values to that of Bernoulli matrices was put forward in
[20,21].

The advantage of using sensing matrices based on
error-control codes from the perspective of reconstruction
complexity is best explained in the context of greedy
algorithms, as argued in our earlier work [18]. A key step
of greedy reconstruction algorithms is to compute the
correlations of the observed vector y with the columns
of the sensing matrix 8 and to identify the column
with the largest correlation. When the columns of the
matrix represent codewords of a linear code, this problem
reduces to the extensively studied maximum likelihood

(ML) decoding problem. For certain classes of codes, near-
ML decoding can be performed in time linear in the length
of the code, which in the described setting implies that
near-optimal correlation optimization can be performed
in time proportional to the number of rows, and not the
number of columns of the sensing matrix.

We focus on codes that lead to reconstruction tech-
niques with sublinear (more precisely, logarithmic) com-
plexity in N . The basic construction and decoding methods
are based on ideas from codes on graphs and iterative de-
coding. We show that a simple combination of reinforced
belief propagation (BP) [22] and a novel list-decoding
method can be coupled with the greedy SP algorithm to
produce good reconstruction algorithms with logarithmic
complexity, for the case of ‘‘super-sparse’’ signals previ-
ously studied in [23]. As already mentioned, the BP algo-
rithm operates on the columns of thematrix8 of lengthm,
and consequently its reconstruction complexity is O (m).

Before outlying the organization of the paper, wewould
like to describe the context of our work within the vast lit-
erature on compressive sensing. Sublinear reconstruction
techniques were first investigated in [23–26], while sparse
sensing matrices coupled with BP decoding were consid-
ered in [11,25]. An idea for sublinear compressive sensing
reconstruction inspired by Sudoku was described in [24],
but the algorithmworks only for input signals with special
structural properties where one requires that all sums of
subsets of coefficients are distinguishable (which is rather
restrictive for binary vectors), andwhere themeasurement
matrix is random. Furthermore, the reconstruction is only
partial, in that the reconstruction complexity strongly de-
pends on the number of recovered entries of the sensed
signal.

Our approach differs from all the aforementioned re-
sults in that it does not use sparse sensing matrices that
are known to incur a performance loss compared to
dense matrices, such as Bernoulli matrices. Although our
structured sensing matrices are dense, they are con-
structed using codewords of large minimum distance low-
density parity-check (LDPC) codes which themselves have
sparse matrix descriptions (i.e., sparse parity-check matri-
ces). Furthermore, no high-complexity preprocessing is re-
quired, and unlike the approach in [23], the complexity of
the algorithm is not polylogarithmic in N , but only log-
arithmic in N; and, as opposed to using sparse matrices
without RIP guarantees, our approach utilizes structured
densematrices constructed from sparsematrices, for which
one can show asymptotic optimality with respect to the
achievable coherence parameter.

The problems addressed in this paper are equally
relevant to questions arising in storage and wireless
communication systems, since a major part of the analysis
is focused on BP decoding for channels with severe
user interference. The framework proposed in this paper
also allows for handling measurement noise, but the
underlying results will be described elsewhere.

The paper is organized as follows. Section 2 provides
a brief introduction to compressive sensing. Section 3 in-
cludes the description of a structured design approach for
compressive sensingmatrices8, amenable forO (K u logN)
complexity decoding of super-sparse vectors, with u = 2
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