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Abstract In this paper, we are concerned with properties of positive solutions of the follow-
ing Euler-Lagrange system associated with the weighted Hardy-Littlewood-Sobolev inequality

in discrete form
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1 Introduction

In this paper, we investigate the summation and nonexistence of the positive solutions to
the following Euler-Lagrange system associated with the weighted Hardy-Littlewood-Sobolev

inequality in discrete form
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Problem (1.1) is related to the weighted Hardy-Littlewood-Sobolev inequality in discrete
form:
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where || f||, = ( SfIT ) , 78 >1,0< A< n0< a+ 3 <n—Xand the powers of the
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To find the best constant in (1.3), one can maximize the functional
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under the constraints || f||» = ||lg|ls = 1. Then we obtain the systems of Euler-Lagrange equa-

tions:
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where A\ir = Xas = J(f, g).
Letujzclf;_l j = c29; l,p:ﬁ,qzs 7, when pg # 1, (1.6) turns into
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In the special case when o = 3 = 0, inequality (1.3) reduces to
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which can be written in another form
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Whenn=1in (1.9) and r,s > 1,2 +1 > 1 X =2~ (£ + 1), then it is the Hardy-Littlewood-
Poélya inequality, which can be found in [6], inequality 381, page 288.

Recently, Li and Villavert [13] extended the well-known Hardy-Littlewood-Pélya inequality
in the case p = ¢ = 2 and A = 1 with a logarithm correction. While Cheng and Li [5] considered
the more general case that A = n and p = ¢ = 2. They first obtain a sharp estimate for the
best constant, then for the optimizer, they prove the uniqueness and a symmetry property. At
the same time, Huang, Li and Yin [7] proved that the best constant in (1.9) can be achieved
when % + % + % > 2. For the double weighted case, the minimize of (1.5) can be done in the
same way when r and s are supercritical, that is % + % + W > 2, and we guess that it is
also true for the critical case, % + % + % =2
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