

Acta Mathematica Scientia 2014,34B(1):65-72

ScienceDirect

http://actams.wipm.ac.cn

QUASI-SURE CONVERGENCE RATE OF EULER SCHEME FOR STOCHASTIC DIFFERENTIAL EQUATIONS*

Wenliang HUANG (黄文亮)

School of Management, Shanghai University of Science and Technology, Shanghai 200093, China Department of Mathematic, East China University of Science and Technology, Shanghai 200237, China E-mail: hwlsqt@163.com

Xicheng ZHANG (张希承)

School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China E-mail: XichengZhang@gmail.com

Abstract Let $X_t(x)$ be the solution of stochastic differential equations with smooth and bounded derivatives coefficients. Let $X_t^n(x)$ be the Euler discretization scheme of SDEs with step 2^{-n} . In this note, we prove that for any R > 0 and $\gamma \in (0, 1/2)$,

$$\sup_{\in [0,1], |x| \leq R} |X_t^n(x,\omega) - X_t(x,\omega)| \leq \xi_{R,\gamma}(\omega) 2^{-n\gamma}, \quad n \ge 1, \quad \text{q.e.}$$

where $\xi_{R,\gamma}(\omega)$ is quasi-everywhere finite.

t

Key words Euler approximation; quasi-sure convergence; SDE

2010 MR Subject Classification 60H15

1 Introduction

Consider the following stochastic differential equation (SDE) of Itô's type :

$$\begin{cases} dX_t = \sigma(X_t) \cdot dW_t + b(X_t) dt, \\ X_0 = x \in \mathbb{R}^d, \end{cases}$$
(1.1)

where $\{W_t\}_{t\in[0,1]}$ is an *m*-dimensional standard Brownian motion defined on the classical Wiener space $(\Omega, \mathcal{F}, \mathcal{P}), \{\sigma_j^i, i = 1, \dots, d, j = 1, \dots, m\}$ and $\{b^i, i = 1, \dots, d\}$ are bounded smooth functions on \mathbb{R}^d with bounded derivatives of all orders. The unique solution is denoted by $X_t(x)$.

The Euler scheme of SDE (1.1) is defined by

$$X_t^n = x + \int_0^t \sigma(X_{s_n}^n) \cdot \mathrm{d}W_s + \int_0^t b(X_{s_n}^n) \mathrm{d}s, \quad n \in \mathbb{N},$$

^{*}Received October 30, 2012.

or recursively,

$$X_t^n = X_{t_n}^n + \sigma(X_{t_n}^n)(W_t - W_{t_n}) + b(X_{t_n}^n)(t - t_n), \qquad (1.2)$$

where $s_n := \frac{[2^n s]}{2^n}$, and [a] denotes the integer part of real number a.

Up to now, there were many papers devoted to the study of the various convergence for Euler's scheme (see [2, 3, 6, 14] etc.). It is interesting that the Euler approximation even can be used to construct the solutions for SDEs with discontinuous coefficients in Gyöngy-Krylov [3]. On the other hand, for the aim of numerical calculations, in [1], Bally and Talay studied the convergence rate of the distribution function for Euler scheme.

As we known, in the classical probability theory, one can ignore a null set in the sense of probability measure. However, a more delicate analysis in potential theory shows that the zero probability set can not always be ignored. Since Malliavin [7] created the stochastic calculus of variation in 1976, the analysis over infinite dimensional spaces was developed extensively. Meanwhile, in the paper [8], Malliavin also initiated the quasi-sure analysis, which is finer than almost-sure analysis in probability theory. More introduction about the quasi-sure analysis can be found in Malliavin [9], Ren [13] and Huang-Yan [4].

Basing on this consideration, in this paper we mainly prove that

Theorem 1.1 For any R > 0 and $\gamma \in (0, \frac{1}{2})$, there are slim set N and a quasi everywhere finite random variable $\xi_{R,\gamma}$ such that for all $\omega \in N^c$,

$$\sup_{t \in [0,1], |x| \leq R} |X_t^n(x,\omega) - X_t(x,\omega)| \leq \xi_{R,\gamma}(\omega) 2^{-n\gamma}, \quad n \geq 1.$$

The proof of this theorem is based on a Doob's inequality in terms of (p, k)-capacity established in Ren [12] together with some necessary estimates. After some preliminaries in Section 2, we shall prove this result in Section 3. Throughout the paper, C with or without indexes will denote different constants, whose values are not important.

2 Preliminaries

We will work on the canonical probability space $(\Omega, \mathcal{F}, \mathcal{P}; \mathbb{H})$, where Ω is the space of continuous functions on [0, 1] starting at zero, and endowed with the topology of the uniform convergence, P the standard Wiener measure, \mathcal{F} the completion of the Borel σ -field of Ω with respect to P, \mathbb{H} the Cameron-Martin subspace, i.e., it consists of functions $h : [0, 1] \to \mathbb{R}$ which are absolutely continuous and whose derivative \dot{h} belongs to $L^2([0, 1])$; \mathbb{H} is then a Hilbert space with the inner product

$$\langle h_1, h_2 \rangle_{\mathbb{H}} = \int_0^1 \dot{h}_1(t) \dot{h}_2(t) \mathrm{d}t$$

For $h \in \mathbb{H}$, let $W(h) := \int_0^1 \dot{h}(t) dW_t$. Let us first recall some elementary facts about the Malliavin calculus (cf. [4, 9]). Let \mathcal{C} be the smooth functional space defined as follows,

$$\mathcal{C} := \Big\{ F = f(W(h_1), \cdots, W(h_n)) : f \in C_b^{\infty}(\mathbb{R}^n, \mathbb{R}), h_i \in \mathbb{H}, 1 \leq i \leq n; n \in \mathbb{N} \Big\}.$$

For $F \in \mathcal{C}$ and $h \in \mathbb{H}$, one defines the gradient operator

$$\langle DF,h\rangle_{\mathbb{H}} = \sum_{i=1}^{n} \partial_i f(W(h_1),\cdots,W(h_n))\langle h_i,h\rangle_{\mathbb{H}}.$$

Download English Version:

https://daneshyari.com/en/article/4663812

Download Persian Version:

https://daneshyari.com/article/4663812

Daneshyari.com