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Abstract We investigate a basisity problem in the space ℓ
p
A

(

D
)

and in its invariant sub-

spaces. Namely, let W denote a unilateral weighted shift operator acting in the space ℓ
p
A

(

D
)

,

1 ≤ p < ∞, by Wz
n = λnz

n+1
, n ≥ 0, with respect to the standard basis

{

z
n
}

n≥0
. Applying

the so-called “discrete Duhamel product” technique, it is proven that for any integer k ≥ 1

the sequence
{(

wi+nk

)−1(

W | Ei

)kn
f
}

n≥0
is a basic sequence in Ei := span

{

z
i+n : n ≥ 0

}

equivalent to the basis
{

z
i+n

}

n≥0
if and only if ̂f

(

i
)

6= 0. We also investigate a Banach

algebra structure for the subspaces Ei, i ≥ 0.
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1 Introduction and Preliminaries

In [4], the author investigated basisity problem in the space ℓ
p
A := ℓ

p
A

(

D
)

, 1 ≤ p < ∞,

consisting from the analytic functions f
(

z
)

=
∞
∑

n=0

̂f
(

n
)

zn in the unit disk D =
{

z ∈ C : |z| < 1
}

for which
∥

∥f
∥

∥

p

p
:=

∞
∑

n=0

∣

∣ ̂f(n)
∣

∣

p
< +∞, where ̂f(n) := f(n)(0)

n! is the n th Taylor coefficient

of the function f . Namely, it is characterized in [4, Theorem 2.1] those function f
(

z
)

in

ℓ
p
A

(

D
)

for which the sequence
{(

nk
)

!V nkf
}∞

n=0
in ℓ

p
A

(

D
)

is a basic sequence equivalent to

the standard basis
{

zn
}∞

n=0
of ℓ

p
A

(

D
)

; here V is the Volterra integration on ℓ
p
A

(

D
)

defined by

V f(z) =
∫ z

0
f(t)dt.
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In the present article, in particular, we generalize this result for the weighted shift operator

W defined on ℓ
p
A

(

D
)

by the formula Wzn = λnzn+1, where λn 6= 0, n ≥ 0, are complex numbers

with sup
n≥0

|λn| < +∞ (see Corollary 2.1 below).

For more informations about bases in spaces of holomorphic functions the readers can be

found, for instance, in Haslinger [6], Holub [7] and Fage and Nagnibida [3].

Before giving our results, let us introduce some necessary notations and preliminaries.

Recall that a sequence
(

xn

)

n≥0
in a Banach space X is said to be a basis for X if every

vector x ∈ X can be written uniquely as a convergent series x =
∞
∑

n=0
anxn. The sequence

(

xn

)

n≥0
is called a basic sequence (see, for instance, Holub [7], Singer [16] and Gürdal [4])

if it forms a basis for its closed linear span in X. If
(

xn

)

n≥0
is a basis for X and

(

yn

)

n≥0
a

basis for Y , we say
(

xn

)

n≥0
and

(

yn

)

n≥0
are equivalent if the operator A : X → Y defined by

Axn = yn, n ≥ 0, is a linear homeomorphism, i.e., if
∞
∑

n=0
anxn converges in X if and only if

∞
∑

n=0
anyn converges in Y [16, p.70].

We put Ei := span
{

zk : k ≥ i
}

, i = 1, 2, · · · , and wn := λ0λ1 · · ·λn−1, w0 := 1. Clearly,

E0 = ℓ
p
A

(

D
)

and WEi ⊂ Ei for each i ≥ 0, that is, Ei is a W -invariant subspace.

Given two functions f
(

z
)

=
∞
∑

n=i

̂f
(

n
)

zn and g
(

z
)

=
∞
∑

n=i

ĝ
(

n
)

zn in Ei

(

i ≥ 0
)

, their so-called

discrete Duhamel product ⊛
i

(see [8]) is defined by

(

f ⊛
i

g
)(

z
)

:=

∞
∑

n=i

∞
∑

m=i

wn+m−i

wnwm

̂f
(

n
)

ĝ
(

m
)

zn+m−i. (1)

It is easy to see from
(

1
)

that the classical Duhamel product

(

f ⊛ g
)(

z
)

:=
d

dz

∫ z

0

f
(

z − t
)

g
(

t
)

dt

corresponds to the case λn = 1
n+1 , n ≥ 0, and i = 0.

Our approach in this article is based on some properties of the discrete Duhamel product

⊛
i

in the subspace Ei. The following lemma can be proved by using the same arguments as in

[8, Proof of Theorem 4] (and therefore we omit its proof); see also in [9, 10].

Lemma 1.1 Let
(

λn

)

n≥0
be a bounded sequence of complex numbers such that

∑

n≥N

∑

m≥N

∣

∣

∣

∣

wn+m−i

wnwm

∣

∣

∣

∣

q

< ∞

for some integer N = Ni ≥ i. Let p ∈
(

1,∞
)

and q be the conjugate exponent to p (i.e.,
1
p + 1

q = 1). Then the following assertions are true:

(i) There exists a constant Ci > 0 such that
∥

∥

∥f ⊛
i

g
∥

∥

∥

Ei

≤ Ci ‖f‖Ei
‖g‖Ei

(2)

for all f, g ∈ Ei, i.e., the subspace Ei ⊂ ℓ
p
A

(

D
)

is a unitial Banach algebra with respect to the

discrete Duhamel product ⊛
i

with the unit wiz
i.

(ii) An element f ∈ Ei is ⊛
i
-invertible if and only if ̂f

(

i
)

6= 0.
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