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Abstract In this article, we derive the intrinsic equations for a generalized relaxed elastic

line on an oriented surface in the Galilean 3-dimensional space G3. These equations will give

direct and more geometric approach to questions concerning about generalized relaxed elastic

lines on an oriented surface in G3.
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1 Introduction

Elasticity theory, being a direct descendant of differential calculus, is certain to have a great

deal of interest to say about geometry, analysis, physics, chemistry, and engineering. Therefore,

several geometers were interested in studying the elasticity theory in Euclidean Space [1–7].

Nevertheless, similar applications of this theory in Minkowski space can be found in [8–10].

The main point of the studying the elasticity theory is defining the intrinsic equations for a

relaxed elastic line on an oriented surface.

The natural variational integrals in geometry are the common integrals on space curves

α (s). These include the length L (α) =
∫

ds, total squared curvature K (α) =
∫

κ2ds used in

[4, 5], total squared torsion T (α) =
∫

τ2ds used in [6, 10] and the integral H (α) =
∫

κ2τds

used in [2]. An elastic line of length l is defined as a curve with associated energy equation

K =
∫ l

0 κ2 (s) ds by Nickerson and Manning in [5], where s is the arc-length along the curve,

κ2 (s) being the square curvature in there. The integral K is called the total square curvature.

If no boundary conditions are imposed at s = l, and if no external forces act at any s, the

elastic line is relaxed [4]. The trajectory of a relaxed elastic line in a space and on a plane is

a straight line because the positive indefinite quantity that defines K takes its minimum value

of zero when the square curvature vanishes for all s. The trajectory of a relaxed elastic line

constrained to lie on a general surface is, which in general bounds, the possible values of K

away from zero.

Hilbert and Cohn-Vossen stated in [11] that a relaxed elastic line with specified position

and tangent at s = 0 always has the trajectory of a geodesic. However, Nickerson and Manning
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have proved in [4, 5] that the conslusion of Hilbert and Cohn-Vossen is incorrect. Nickerson

and Manning in [5] have obtained intrinsic equations of the relaxed elastic line on an oriented

surface as a model of DNA molecule. As briefly mentioned above, the authors calculated the

intrinsic equations of relaxed elastic lines with the aid of Kg just by using curvature of an elastic

curve in [5]. In [1, 2, 6–10], similar equations for similar energy functions in Euclidean space,

Pseudo-Euclidean space, and Minkowski space are shown.

Besides Euclidean Geometry, a range of new types of geometries have been invented and

developed in the last two centuries. They can be introduced in a variety of ways. One possible

way is through projective manner, where one can express metric properties through projective

relations. Among these geometries, there is also Galilean geometry, which is our concern here.

As the Darboux frames are different by the signs in articles mentioned above, the intrinsic

equations of relaxed elastic lines are different from each other by their signs. However, in

Galilean space, we have different intrinsic equations of relaxed elastic lines due to the structure

of Darboux frame. For example, in Lemma 3.1, one can see that dλ
dt |t=0 = 0 for Galilean space

whereas dλ
dt |t=0 = ±

∫ l

0
µκgds in Euclidean and Minkowski spaces. In the literature, there is not

any study on the elasticity problem in the Galilean space G3 which is our main focus in this

article. To this purpose, we first derive the intrinsic equations for a generalized relaxed elastic

line on an oriented surface in G3 by using the notion of Galilean Darboux frame of a curve in

G3. Then, we obtain intrinsic equations for a generalized relaxed elastic line on an oriented

surface in G3 using this frame. Here, as the energy density is given as a function f (κ, τ) = κ2τ ,

we give the equations in G3 with the aid of Kn using both the curvature and the torsion of the

elastic curve.

The main result of this article is given in Theorem 3.2. We describe the geometric meaning

of this theorem in Section 4.

2 Preliminaries on Galilean Geometry

“All geometry is projective geometry” (A. Cayley). From Cayley’s point of view, G3 is a

real 3-dimensional projective space P 3(R), the set of equivalent classes of ∼ on R4 − {0} by

equivalence relation x ∼ y iff x = λy for some λ ∈ R − {0}. Thus, P 3(R) is obtained as a

factor space on R4 − {0} by ∼, that is, P 3(R)=̃(R4 − {0})/ ∼ [12]. We can think of P 3(R)

more geometrically as a set of lines through the origin in R4. G3 is a real Cayley-Klein space

equipped with the projective metric of signature (0, 0, +, +), as shown in [13]. The absolute

of the Galilean geometry is an ordered triple {w, f, I}, where w is the ideal (absolute) plane,

f is the line (absolute line) in w, and I is the fixed elliptic involution of points of f . The

points, the lines, and the planes of P 3(R) are the one-dimensional, two-dimensional, and three-

dimensional subspaces of R4, respectively [14]. Therefore, G3 contains R3 as a proper subset,

and the complement in G3 to w is diffeomorphic to R3.

Let P be any point of R3 with affine coordinates (x, y, z). Write (x, y, z) as (X1

X0
, X2

X0
, X3

X0
),

where X0 is some common deminator. Call (X0, X1, X2, X3) the homogeneous coordinates of

P . Thus, the homogeneous coordinates (X0 : X1 : X2 : X3) and ρ(X0 : X1 : X2 : X3) refer to

the same point for all ρ ∈ R−{0}, [14]. Now, we can introduce homogeneous coordinates in G3

in such a way that the absolute plane w is given by X0 = 0, the absolute line f by X0 = X1 = 0,

and the elliptic involution I by (0 : 0 : X2 : X3) → (0 : 0 : X3 : −X2). In affine coordinates, the
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