A SUFFICIENT CONDITION OF CONVERGENCE FOR CLIFFORD CONTINUED FRACTIONS＊

Li Yongqun（李永群）
Department of Mathematics，Hunan University，Changsha 410082，China
Wang Xiantao（王仙桃）
Department of Mathematics，Hunan Normal University，Changsha 410081，China
E－mail：xtwang＠hunnu．edu．cn

Abstract

In this article，a sufficient condition for a Clifford continued fraction to be convergent is established，and some applications are given．

Key words Clifford continued fraction；sufficient condition；convergence；application
2000 MR Subject Classification 40A15；11J70

1 Preliminaries

Let A_{m} denote the associative algebra over the reals \mathbb{R} generated by $1, e_{1}, e_{2}, \cdots, e_{m-1}$ subject to the relations $e_{i}^{2}=-1$ and $e_{i} e_{j}=-e_{j} e_{i}(i \neq j), i, j=1,2, \cdots, m-1$［12］．Each element $a \in A_{m}$ has a unique representation in the form

$$
\begin{equation*}
a=a_{0}+\sum a_{v} E_{v} \tag{1.1}
\end{equation*}
$$

where a_{0}, a_{v} are reals，the summation is over all multi－indices $v=\left(v_{1}, v_{2}, \cdots, v_{p}\right)$ with $0<$ $v_{1}<v_{2}<\cdots<v_{p} \leq m-1$ and $E_{v}=e_{v_{1}} e_{v_{2}} \cdots e_{v_{p}} . a_{0}$ is said to be the real part of a ，denoted by $a_{0}=\operatorname{Re}(a)$ ．The modulus of a is defined by

$$
|a|=\left(a_{0}^{2}+\sum a_{v}^{2}\right)^{\frac{1}{2}}
$$

Let a^{\prime} be the element obtained from a by replacing each e_{i} in（1．1）by $-e_{i}, a^{*}$ the element obtained from a by reversing the order of the factors in each $E_{v}=e_{v_{1}} e_{v_{2}} \cdots e_{v_{p}}$ ，and $\bar{a}=\left(a^{*}\right)^{\prime}=$ $\left(a^{\prime}\right)^{*}$ ．Obviously，$(a+b)^{\prime}=a^{\prime}+b^{\prime},(a b)^{\prime}=a^{\prime} b^{\prime}$ and $(a b)^{*}=b^{*} a^{*}$ ．

All the elements $x=x_{0}+x_{1} e_{1}+\cdots+x_{m-1} e_{m-1}\left(x_{k} \in \mathbb{R}, k=0,1, \cdots, m-1\right)$ are said to be vectorial elements in A_{m} ，denoted by $x \in \mathbb{R}^{m}$ ．Let Γ_{m} be the set of all elements in A_{m} which can be expressed as a finite product of non－zero vectorial elements of A_{m} ．It is said to be the m－dimensional Clifford group．For any $a, b \in \Gamma_{m}$ ，we know that $|a|^{2}=a \bar{a}=\bar{a} a$ and

[^0]$|a b|=|b a|=|a||b|[1-3]$, and for any $a \in \Gamma_{m}, a$ is invertible. In the following, we assume that $a^{-1}=\infty$ if $a=0$ and $a^{-1}=0$ if $a=\infty$.

Definition $1 \quad A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is said to be an m-dimensional Clifford matrix if
i) $a, b, c, d \in \Gamma_{m} \bigcup\{0\}$;
ii) $\Delta(A)=a d^{*}-b c^{*} \in \mathbb{R} \backslash\{0\}$;
iii) $a b^{*}, c d^{*}, a^{*} c, b^{*} d \in \mathbb{R}^{m}$.

Let $G L\left(2, \Gamma_{m}\right)$ denote the group of all m-dimensional Clifford matrices with the matrix product operation. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G L\left(2, \Gamma_{m}\right)$ correspond to the mapping in $\overline{\mathbb{R}}^{m}$:

$$
s: \quad x \mapsto s x=(a x+b)(c x+d)^{-1}
$$

Then, s is a bijective mapping from $\overline{\mathbb{R}}^{m}$ onto itself [2]. In the following, we always write $s=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. And we call $\bar{s}=\left(\begin{array}{cc}\bar{a} & \bar{c} \\ \bar{b} & \bar{d}\end{array}\right)$ the conjugate transpose matrix of s.

As in $[9,10]$, we give the following definition:
Definition 2 A Clifford continued fraction is an ordered pair ($\left.\left\{b_{n}\right\},\left\{c_{n}\right\},\left\{d_{n}\right\} ;\left\{f_{n}\right\}\right)$, where $\left\{b_{n}\right\}_{1}^{\infty},\left\{c_{n}\right\}_{1}^{\infty}$, and $\left\{d_{n}\right\}_{1}^{\infty}$ are given sequences of Clifford numbers in $\Gamma_{m} \bigcup\{0\}$ with $s_{n}=\left(\begin{array}{cc}0 & b_{n} \\ c_{n} & d_{n}\end{array}\right) \in G L\left(2, \Gamma_{m}\right)(n \geq 1)$, and $\left\{f_{n}\right\}_{1}^{\infty}$ is the sequence in $\overline{\mathbb{R}}^{m}$ defined by

$$
f_{n}=S_{n}(0) \quad(n \geq 1)
$$

where

$$
S_{n}=s_{1} \circ s_{2} \circ \cdots \circ s_{n}
$$

For convenience, in general, we denote a Clifford continued fraction $\left(\left\{b_{n}\right\},\left\{c_{n}\right\},\left\{d_{n}\right\} ;\left\{f_{n}\right\}\right)$ by the symbol

$$
\begin{equation*}
\frac{b_{1}}{d_{1}}+\frac{c_{1} b_{2}}{d_{2}}+\frac{c_{2} b_{3}}{d_{3}}+\cdots . \tag{1.2}
\end{equation*}
$$

Then, we call $\left\{f_{n}\right\}$ the sequence of approximants of (1.2) and f_{n} the nth approximant.
Definition 3 Clifford continued fractions ($\left.\left\{b_{n}\right\},\left\{c_{n}\right\},\left\{d_{n}\right\} ;\left\{f_{n}\right\}\right)$ and $\left(\left\{b_{n}^{*}\right\},\left\{c_{n}^{*}\right\},\left\{d_{n}^{*}\right\}\right.$; $\left.\left\{f_{n}^{*}\right\}\right)$ are said to be equivalent if $f_{n}=f_{n}^{*}$ for all n.

A Clifford continued fraction (1.2) is said to be convergent if its sequence of approximants $\left\{f_{n}\right\}$ converges to a point in $\overline{\mathbb{R}}^{m}$.

In complex continued fractions, the following question is interesting.
Question 1 When does a continued fraction converge?
About Question 1, the following were proved.
Theorem A $[7,11]$ Let $K\left(1 / b_{n}\right)$ be a continued fraction with positive elements b_{n}.
i) If f_{n} denotes the nth approximant, then,

$$
f_{2 n-1}>f_{2 n+1}>f_{2 n+2}>f_{2 n}, \quad n=1,2,3 \cdots
$$

so that the even and odd parts of $K\left(1 / b_{n}\right)$ both converge to finite values.
ii) If, in addition, $\sum b_{n}=\infty$, then, the continued fraction converges to a finite value f and

$$
\left|f-f_{n}\right|<\left|f_{n}-f_{n-1}\right|, \quad n=2,3,4, \cdots
$$

https://daneshyari.com/en/article/4664376

Download Persian Version:
https://daneshyari.com/article/4664376

Daneshyari.com

[^0]: ${ }^{*}$ Received April 25，2006；revised July 2，2007．The research was partly supported by NSFs of China （10771059 and 11071063）and Hunan Province（05JJ10001），and NCET（04－0783）

