

Acta Mathematica Scientia 2011,31B(1):8-14

ScienceDirect

http://actams.wipm.ac.cn

A SUFFICIENT CONDITION OF CONVERGENCE FOR CLIFFORD CONTINUED FRACTIONS*

Li Yongqun (李永群)

Department of Mathematics, Hunan University, Changsha 410082, China Wang Xiantao (王仙桃) Department of Mathematics, Hunan Normal University, Changsha 410081, China E-mail: xtwang@hunnu.edu.cn

Abstract In this article, a sufficient condition for a Clifford continued fraction to be convergent is established, and some applications are given.

Key words Clifford continued fraction; sufficient condition; convergence; application2000 MR Subject Classification 40A15; 11J70

1 Preliminaries

Let A_m denote the associative algebra over the reals \mathbb{R} generated by 1, e_1, e_2, \dots, e_{m-1} subject to the relations $e_i^2 = -1$ and $e_i e_j = -e_j e_i$ $(i \neq j), i, j = 1, 2, \dots, m-1$ [12]. Each element $a \in A_m$ has a unique representation in the form

$$a = a_0 + \sum a_v E_v, \tag{1.1}$$

where a_0 , a_v are reals, the summation is over all multi-indices $v = (v_1, v_2, \dots, v_p)$ with $0 < v_1 < v_2 < \dots < v_p \le m-1$ and $E_v = e_{v_1} e_{v_2} \cdots e_{v_p}$. a_0 is said to be the real part of a, denoted by $a_0 = \operatorname{Re}(a)$. The modulus of a is defined by

$$|a| = (a_0^2 + \sum a_v^2)^{\frac{1}{2}}.$$

Let a' be the element obtained from a by replacing each e_i in (1.1) by $-e_i$, a^* the element obtained from a by reversing the order of the factors in each $E_v = e_{v_1} e_{v_2} \cdots e_{v_p}$, and $\overline{a} = (a^*)' = (a')^*$. Obviously, (a + b)' = a' + b', (ab)' = a'b' and $(ab)^* = b^*a^*$.

All the elements $x = x_0 + x_1e_1 + \cdots + x_{m-1}e_{m-1}$ $(x_k \in \mathbb{R}, k = 0, 1, \cdots, m-1)$ are said to be vectorial elements in A_m , denoted by $x \in \mathbb{R}^m$. Let Γ_m be the set of all elements in A_m which can be expressed as a finite product of non-zero vectorial elements of A_m . It is said to be the *m*-dimensional Clifford group. For any $a, b \in \Gamma_m$, we know that $|a|^2 = a\overline{a} = \overline{a}a$ and

^{*}Received April 25, 2006; revised July 2, 2007. The research was partly supported by NSFs of China (10771059 and 11071063) and Hunan Province (05JJ10001), and NCET (04-0783)

 $a^{-1} = \infty$ if a = 0 and $a^{-1} = 0$ if $a = \infty$. **Definition 1** $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is said to be an *m*-dimensional Clifford matrix if i) $a, b, c, d \in \Gamma_m \mid \{0\}$

- ii) $\Delta(A) = ad^* bc^* \in \mathbb{R} \setminus \{0\};$
- iii) $ab^*, cd^*, a^*c, b^*d \in \mathbb{R}^m$.

Let $GL(2,\Gamma_m)$ denote the group of all *m*-dimensional Clifford matrices with the matrix product operation. Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(2, \Gamma_m)$ correspond to the mapping in $\overline{\mathbb{R}}^m$:

 $s: x \mapsto sx = (ax+b)(cx+d)^{-1}.$

Then, s is a bijective mapping from $\overline{\mathbb{R}}^m$ onto itself [2]. In the following, we always write $s = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. And we call $\overline{s} = \begin{pmatrix} \overline{a} & \overline{c} \\ \overline{b} & \overline{d} \end{pmatrix}$ the conjugate transpose matrix of s.

As in [9, 10], we give the following definition:

Definition 2 A Clifford continued fraction is an ordered pair $(\{b_n\}, \{c_n\}, \{d_n\}; \{f_n\})$, where $\{b_n\}_1^{\infty}, \{c_n\}_1^{\infty}$, and $\{d_n\}_1^{\infty}$ are given sequences of Clifford numbers in $\Gamma_m \bigcup \{0\}$ with $s_n = \begin{pmatrix} 0 & b_n \\ c_n & d_n \end{pmatrix} \in GL(2, \Gamma_m) \ (n \ge 1), \text{ and } \{f_n\}_1^\infty \text{ is the sequence in } \overline{\mathbb{R}}^m \text{ defined by }$

$$f_n = S_n(0) \quad (n \ge 1),$$

where

$$S_n = s_1 \circ s_2 \circ \cdots \circ s_n.$$

For convenience, in general, we denote a Clifford continued fraction $(\{b_n\}, \{c_n\}, \{d_n\}; \{f_n\})$ by the symbol

$$\frac{b_1}{d_1} + \frac{c_1 b_2}{d_2} + \frac{c_2 b_3}{d_3} + \cdots$$
(1.2)

Then, we call $\{f_n\}$ the sequence of approximants of (1.2) and f_n the *n*th approximant.

Definition 3 Clifford continued fractions $(\{b_n\}, \{c_n\}, \{d_n\}; \{f_n\})$ and $(\{b_n^*\}, \{c_n^*\}, \{d_n^*\}; \{d_n^*\})$ $\{f_n^*\}\)$ are said to be equivalent if $f_n = f_n^*$ for all n.

A Clifford continued fraction (1.2) is said to be convergent if its sequence of approximants $\{f_n\}$ converges to a point in $\overline{\mathbb{R}}^m$

In complex continued fractions, the following question is interesting.

Question 1 When does a continued fraction converge?

About Question 1, the following were proved.

Theorem A [7, 11] Let $K(1/b_n)$ be a continued fraction with positive elements b_n .

i) If f_n denotes the *n*th approximant, then,

$$f_{2n-1} > f_{2n+1} > f_{2n+2} > f_{2n}, \quad n = 1, 2, 3 \cdots,$$

so that the even and odd parts of $K(1/b_n)$ both converge to finite values.

ii) If, in addition, $\sum b_n = \infty$, then, the continued fraction converges to a finite value f and

$$|f - f_n| < |f_n - f_{n-1}|, \quad n = 2, 3, 4, \cdots.$$

Download English Version:

https://daneshyari.com/en/article/4664376

Download Persian Version:

https://daneshyari.com/article/4664376

Daneshyari.com