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Abstract We study Hölder continuous solutions for the second order integro-differential

equations with infinite delay (P1): u′′(t)+cu′(t)+
∫ t

−∞
β(t−s)u′(s)ds+

∫ t

−∞
γ(t−s)u(s)ds =

Au(t)−
∫ t

−∞
δ(t− s)Au(s)ds+ f(t) on the line R, where 0 < α < 1, A is a closed operator

in a complex Banach space X, c ∈ C is a constant, f ∈ Cα(R, X) and β, γ, δ ∈ L1(R+).

Under suitable assumptions on the kernels β, γ and δ, we completely characterize the Cα-

well-posedness of (P1) by using operator-valued Ċα-Fourier multipliers.
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1 Introduction

In a series of recent publications operator-valued Fourier multipliers on vector-valued func-

tion spaces were studied (see e.g. [1–3, 5, 14, 15]). They are needed to study the existence

and uniqueness of solutions for differential equations on Banach spaces. In this paper, we use

operator-valued Ċα-multiplier results established in [3] to study the Cα-well-posedness for the

following integro-differential equations with infinite delay:

(P1) u′′(t) + cu′(t) +

∫ t

−∞

β(t− s)u′(s)ds +

∫ t

−∞

γ(t− s)u(s)ds

= Au(t)−

∫ t

−∞

δ(t− s)Au(s)ds + f(t) (t ∈ R),

here 0 < α < 1, A is a closed operator in a complex Banach space X , c ∈ C is a constant,

f ∈ Cα(R, X) and β, γ, δ ∈ L1(R+). In this paper, under suitable assumptions on the kernels

β, γ and δ, we are able to completely characterize the Cα-well-posedness of (P1).
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We recall that, when γ = 0, the same second order integro-differential equations with

infinite delay on the interval [0, 2π] with periodic boundary conditions

(P2)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u′′(t) + cu′(t) +

∫ t

−∞

β(t− s)u′(s)ds

= Au(t)−

∫ t

−∞

δ(t− s)Au(s)ds + f(t) (0 ≤ t ≤ 2π),

u(0) = u(2π), u′(0) = u′(2π)

were studied by Bu and Fang [6], where they gave conditions on the kernels β and δ to ensure

the Lp-well-posedness, Bs
p,q-well-posedness or F s

p,q-well-posedness of (P2).

Many literatures devoted to the similar first order integro-differential equation

(P3)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

γ0u
′(t) +

∫ t

−∞

b(t− s)u′(s)ds + γ∞u(t)

= c0Au(t)−

∫ t

−∞

a(t− s)Au(s)ds + f(t) (0 ≤ t ≤ 2π),

u(0) = u(2π),

where γ0, γ∞, c0 are constants, A is a closed linear operator in X , and a, b ∈ L1(R+). The

class of equation of type (P1), (P2) and (P3) arises as models for nonlinear heat conduction

in material of fading memory type and population dynamics. In [12], Keyantuo and Lizama

obtained the maximal regularity of (P3) on Lp spaces and Besov spaces. They also studied

this equation in the case γ0 = c0 = 1, b = γ∞ = 0 in a previous paper [11]. Clément and Da

Prato studied (P3) on the real line in the case a = 0 and obtained maximal regularity results

in Sobolev spaces and Hölder spaces as well as the space of bounded uniformly continuous

functions [8]. Da Prato and Lunardi [9] investigated periodic solutions of equation (P3) in the

case b = 0. Hölder continuous solutions for equation (P3) were studied on the real line by

Lunardi [13] in the case A to be the Laplacian operator in a bounded domain Ω ⊂ RN and

X = C(Ω̄). Recently, under some mild conditions on a, b, Keyantuo and Lizama were able to

completely characterize the Cα-well-posedness of (P2) [10].

We notice that problem (P1) was studied by several authors in a more simpler form and

different boundary conditions. For instance, Chill and Srivastava [7] considered the Lp-maximal

regularity on a finite interval [0,T) for the abstract second order problem

(P4)

⎧⎨
⎩

u′′(t) + Bu′(t) + Au(t) = f(t) (0 ≤ t < T ),

u(0) = 0, u′(0) = 0.

The semigroup theory and the trace spaces played important roles in their discussions. Under

a suitable condition on the operators A and B, they gave a necessary and sufficient condition

for problem (P4) to have the Lp-maximal regularity.

In this paper, we are interested in the existence and uniqueness of Hölder continuous

solutions of (P1). Since A is not necessarily the generator of semigroups in our situation,

semigroup theory is no longer applicable. So our main tool in this paper is the operator-valued

Ċα-Fourier multiplier results established by Arendt, Batty and Bu [3]. The conditions that we
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