BIHARMONIC EQUATIONS WITH ASYMPTOTICALLY LINEAR NONLINEARITIES＊

Liu Yue ${ }^{1,2}$（刘玥）Wang Zhengping ${ }^{1}$（王征平）
1．Wuhan Institute of Physics and Mathematics，Chinese Academy of sciences，Wuhan 430071，China 2．China Institute of Defence Science and Technology，Beijing 100094，China
E－mail：wangzp＠wipm．ac．cn

Abstract This article considers the equation

$$
\Delta^{2} u=f(x, u)
$$

with boundary conditions either $\left.u\right|_{\partial \Omega}=\left.\frac{\partial u}{\partial n}\right|_{\partial \Omega}=0$ or $\left.u\right|_{\partial \Omega}=\left.\triangle u\right|_{\partial \Omega}=0$ ，where $f(x, t)$ is asymptotically linear with respect to t at infinity，and Ω is a smooth bounded domain in $R^{N}, N>4$ ．By a variant version of Mountain Pass Theorem，it is proved that the above problems have a nontrivial solution under suitable assumptions of $f(x, t)$ ．
Key words Biharmonic，mountain pass theorem，asymptotically linear
2000 MR Subject Classification 35J60，35J65

1 Introduction and Main Results

Considering the following biharmonic problems：

$$
\left\{\begin{array}{l}
\Delta^{2} u=f(x, u), \quad \text { in } \Omega \tag{P1}\\
\left.u\right|_{\partial \Omega}=\left.\frac{\partial u}{\partial n}\right|_{\partial \Omega}=0
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\Delta^{2} u=f(x, u), \quad \text { in } \Omega \tag{P2}\\
\left.u\right|_{\partial \Omega}=\left.\Delta u\right|_{\partial \Omega}=0
\end{array}\right.
$$

where Ω is a smooth bounded domain in $R^{N}, N>4$ ．We assume that $f(x, t)$ satisfies the following hypotheses：
（H1）$f(x, t) \in C(\bar{\Omega} \times R) ; f(x, 0)=0, \forall x \in \bar{\Omega} ; f(x, t) \geq 0, \forall t \geq 0, x \in \bar{\Omega}$ and $f(x, t) \equiv$ $0, \forall t \leq 0, x \in \bar{\Omega}$ ．
（H2） $\lim _{t \rightarrow 0} \frac{f(x, t)}{t}=p(x), \lim _{t \rightarrow+\infty} \frac{f(x, t)}{t}=l(0<l \leq+\infty)$ uniformly in a．e．$x \in \Omega$ ，where $0 \leq p(x) \in L^{\infty}(\Omega)$ ，and $|p(x)|_{\infty}<\lambda_{1}$ for the problem $(P 1), \lambda_{1}$ is the first eigenvalue of

[^0]$\left(\Delta^{2}, H_{0}^{2}(\Omega)\right) ;|p(x)|_{\infty}<\Lambda_{1}$ for the problem (P2), Λ_{1} is the first eigenvalue of $\left(\Delta^{2}, H^{2}(\Omega) \cap\right.$ $\left.H_{0}^{1}(\Omega)\right)$.

By (H2), we call $f(x, t)$ asymptotically linear with respect to t at infinity.
Definition (1) $u \in H_{0}^{2}(\Omega)$ is a weak solution to (P1) if

$$
\begin{equation*}
\int_{\Omega} \Delta u \Delta \varphi \mathrm{~d} x=\int_{\Omega} f(x, u) \varphi \mathrm{d} x \text { for all } \varphi \in H_{0}^{2}(\Omega) \tag{1.1}
\end{equation*}
$$

(2) $u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ is a weak solution to (P2) if

$$
\begin{equation*}
\int_{\Omega} \Delta u \Delta \varphi \mathrm{~d} x=\int_{\Omega} f(x, u) \varphi \mathrm{d} x \text { for all } \varphi \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega) \tag{1.2}
\end{equation*}
$$

where $H_{0}^{2}(\Omega)$ is the standard Sobolev space with equivalent norm $\|\Delta u\|_{L^{2}(\Omega)}$ according to Gilbarg and Trudinger [1, Corollary 9.10], and the Hilbert space $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ can be endowed with the scalar product $(u, v)=\int_{\Omega} \Delta u \Delta v \mathrm{~d} x$, which induces the norm $\|u\|=\|\Delta u\|_{L^{2}(\Omega)}$ equivalent to the standard norm of $H^{2}(\Omega)$ (see [2], Remark 2.1 and 2.2). For the sake of completeness we will give a short proof in Section 2.

Remark 1.1 For Dirichlet boundary value problem (P1), it is well-known that seeking a weak solution of (P1) is equivalent to finding a nonzero critical point of the following functional on $H_{0}^{2}(\Omega)$:

$$
\begin{equation*}
I(u)=\frac{1}{2} \int_{\Omega}|\Delta u|^{2} \mathrm{~d} x-\int_{\Omega} F(x, u) \mathrm{d} x, \text { where } F(x, u)=\int_{0}^{u} f(x, t) \mathrm{d} t \tag{1.3}
\end{equation*}
$$

But for the Navier boundary value problem (P2), it is not so clear why the second boundary condition can be satisfied by a critical point of the following functional on $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$:

$$
\begin{equation*}
J(u)=\frac{1}{2} \int_{\Omega}|\Delta u|^{2} \mathrm{~d} x-\int_{\Omega} F(x, u) \mathrm{d} x, \text { where } F(x, u)=\int_{0}^{u} f(x, t) \mathrm{d} t \tag{1.4}
\end{equation*}
$$

In [3] using some information about the regularity of such critical points the author showed that the critical point for J satisfies the second boundary condition in the sense of traces.

In order to find critical points of the functional I in (1.3) (or J in (1.4)), one usually applies the Mountain Pass Theorem proposed by Ambrosetti and Rabinowitz in [11]. For applying the theorem, one often requires the following technique condition introduced in [11], that is, for some $\theta>2$ and $M>0$,

$$
\begin{equation*}
0<\theta F(x, t) \leq f(x, t) t \text { for all }|t| \geq M \text { and } x \in \Omega \tag{AR}
\end{equation*}
$$

Condition (AR) is important for ensuring that the functional I in (1.3) (or J in (1.4)) has a "Mountain Pass" geometry and that each (PS) c sequence is bounded in $H_{0}^{2}(\Omega)$ (or $H^{2}(\Omega) \cap$ $\left.H_{0}^{1}(\Omega)\right)$.

If $f(x, t)$ admits subcritical growth and satisfies (AR) condition by the standard argument of applying Mountain Pass Theorem, we know that problems (P1) and (P2) have nontrivial solutions. Similarly, lase $f(x, t)$ is of critical growth (See, for example, [3-6], [13], and their references). Recently, problem (P1) was also studied by Yao and Shen [14] for $f(x, u)$ to be just linear.

https://daneshyari.com/en/article/4664722

Download Persian Version:
https://daneshyari.com/article/4664722

Daneshyari.com

[^0]: ＊Received January 5，2005．This work was supported by NSFC（10571174，10631030）and CAS（KJCX3－ SYW－S03）

