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Abstract 
relative Kolmogorov n-width of W relative to V defined by 

For two subsets W and V of a Banach space X ,  let K,(W, V, X )  denote the 

where the infimum is taken over all n-dimensional linear subspaces L,  of X .  Let W2(Ar) 
denote the class of Zn-periodic functions f with d-variables satisfying 

J IA‘f (.)I2  d. I 1, 
[ -mr,4d 

while Ar is the r-iterate of Laplace operator A. This article discusses the relative Kol- 
mogorov n-width of W,(Ar) relative to W2(Ar) in Lq([-n,n]d) (1 5 q I m), and obtain 
its weak asymptotic result. 
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1 Introduction 

The notion of relative width has been introduced by V. N. Konovalov [l]. Let W and V be 
centrally symmetric sets in a Banach space X. The relative Kolmogorov n-width of W relative 
t o  V is defined by 
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where the infimum is taken over all n-dimensional subspaces L, of X. 
When V = X, the relative Kolmogorov n-width K,(W, X, X) coincides with the usual 

Kolmogorov n-width of W in X, which we shall denote by d,(W, X). Obviously, K,(W, V,  X) 2 
d,(W, X) for any set V c X. 

Let R, Z, and Z+ denote the set of all real numbers, all integral numbers, and all positive 
integral numbers, respectively. For 1 5 p 5 00 and d E Z+, let Lp(Td) (Td = [-n,n]d, and 
T = T1) denote the real space of 2n periodic Lebesgue measurable functions f with the following 
finite norm 

l l f l l L p ( T d )  = { Ld If(")/Pdx}l'pi 1 5 P < 00; 

When d = 1 and r E Z+,  let W i ( T )  denote the Sobolev class of 2n periodic continuous 
functions f for which the ( r -  1)-th derivatives are absolutely continuous and the r-th derivatives 
satisfy IIf(')IIL,(T, I 1. 

Konovalov in [l] showed that for all r E Z+ and r 2 2 there holds 

K,(W,(T), W,(T), Lm(T)) =c n-? n--$m, 

-1 K,(WA(T), W,.&(T), Lm(T)) =: R. 1 n + 00. 

Babenko in [2] established a similar result for the class W { ( T )  in the Ll(T)-metric EM 

follows K,L(W{(T),  W { ( T ) ,  L1(T)) =: nP2,n  + 00, for r E Z+ and r 2 3. 
Konovalov in [3] obtained that for each r E Z+ and 1 I q 5 00, 

K,(W,'(T), W i ( T ) ,  L,(T)) =: n-Inin{T-i+:lT} , n 2 1 .  

It is well-known (see, for example, [4, p.2491) that for the univariate functions, for all 
7- E Z+l 

- T  K,(Wi(T),  W i ( T ) ,  LZ(T)) =: n , n + 00. 

When d > 1, for a given vector r = ( T I ,  r2, . . . , rd) with natural components and such that 
rj 2 3 (1 5 j 5 d ) ,  set W i  = {f E L p ( P )  : IID'fll&(Td) I 1) and 

00 mn 
2 

B,,,(t) = n-l C k - n c o s ( k t  - -), t E R , m  E Z+, 
k= 1 

and B, * 4 denotes the convolution of Br and 4 defined by 

Br * 4(x) = Ld Br(x -- y)4(Y)d2/. 

Babcnko in [5] generalized the result of [2] to the multivariate case and obtained the 
following cstimate K,(w~L~(T~), w~(T"),  L1(Td)) :: np2ld,  n -+ 00. 
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