

Available online at www.sciencedirect.com

Acta Mathematica Scientia 2009,29B(5):1323-1340

ScienceDirect

http://actams.wipm.ac.cn

MULTIPLE SOLUTIONS FOR SCHRÖDINGER EQUATIONS WITH MAGNETIC FIELD*

Peng Chaoquan (彭超权)

College of Computer, South-Central University for Nationalities, Wuhan 430074, China E-mail: pcq1979@163.com

Yang Jianfu (杨健夫)

Department of Mathematics, Jiangxi Normal University, Nanchang 330022, China E-mail: jfyang_2000@yahoo.com

Abstract The authors consider the semilinear Schrödinger equation

$$-\Delta_A u + V_\lambda(x)u = Q(x)|u|^{\gamma-2}u \quad \text{in} \quad \mathbb{R}^N$$

where $1 < \gamma < 2^*$ and $\gamma \neq 2$, $V_{\lambda} = V^+ - \lambda V^-$. Exploiting the relation between the Nehari manifold and fibrering maps, the existence of nontrivial solutions for the problem is discussed.

Key words Nehari manifold; fibrering maps; Schrödinger equation2000 MR Subject Classification 35J60; 35J65

1 Introduction

In this article, we study the existence of nontrivial solutions of the semilinear Schrödinger equation

$$-\Delta_A u + V_\lambda(x)u = Q(x)|u|^{\gamma-2}u, \quad x \in \mathbb{R}^N,$$
(1.1)

where $-\Delta_A = (-i\nabla + A)^2$, $u : \mathbb{R}^N \to \mathbb{C}$, $N \ge 3$, $1 < \gamma < 2^*$ and $\gamma \ne 2$. The coefficient V_λ is the scalar (or electric) potential and $A = (A_1, \dots, A_N) : \mathbb{R}^N \to \mathbb{R}^N$ is the vector (or magnetic) potential. We assume in this paper that $A \in L^2_{loc}(\mathbb{R}^N)$, $V_\lambda(x)$ and Q(x) are continuous functions changing signs on \mathbb{R}^N . $V_\lambda(x) = V^+(x) - \lambda V^-(x)$, where $V^+(x) = \max(V(x), 0)$, $V^-(x) = \max(-V(x), 0)$ and $V^-(x) \in L^{\frac{N}{2}}(\mathbb{R}^N)$. It is assumed that $\lim_{|x|\to\infty} Q(x) = Q(\infty) < 0$. Further assumptions on $V_\lambda(x)$ and Q(x) will be formulated later.

In the case A = 0, the problem was extensively studied. In particular, in a bounded domain Ω , it was established in [4] the existence and multiplicity of non-negative solutions of (1.1) for $\gamma > 2$. Later, the case $1 < \gamma < 2$ was considered in [2]. In the whole space \mathbb{R}^N , if $V \in L^{\frac{N}{2}}(\mathbb{R}^N)$, the eigenvalue problem

$$-\Delta u = \lambda V(x)u \quad \text{in } \mathbb{R}^N$$

^{*}Received April 24, 2007. The first author was supported by NSF of South-Central University for Nationalities (yzz08001) and the second author was supported by NNSF of China (10571175 and 10631030)

has a sequence of eigenvalues, $0 < \lambda_1(V) \le \lambda_2(V) \le \cdots \le \lambda_n(V) \le \cdots$, of finite multiplicity and going to infinity. Under this condition, it was proved in [8], that, for $V_{\lambda} = -\lambda V$,

(i) problem (1.1) has a positive solution for every $0 < \lambda < \lambda_1(V)$.

(ii) if $\int_{\mathbb{R}^N} Q\phi_1^{\gamma} dx < 0$, where ϕ_1 is the eigenfunction corresponding to $\lambda_1(V)$, then there exists a constant $\delta > 0$ such that problem (1.1) admits at least two positive solutions for every $\lambda_1(V) < \lambda < \lambda_1(V) + \delta$. These solutions were obtained by the mountain-pass lemma and local minimization. Similar results were obtained for the *p*-Laplacian in \mathbb{R}^N in [6] and [10].

Recently, much interest in the case $A \neq 0$ has arisen and various existence results were obtained, see for instance, [1], [5], [7], [11] and references therein. Inspired by [2] and [4], we consider the existence of nontrivial solutions for (1.1) with $A \neq 0$. We classify the Nehari manifold, and find solutions of (1.1) as minimizers of the associated functional on two distinct components of the Nehari manifold.

It is known from [7] that the eigenvalue problem

$$-\Delta_A u + V^+(x)u = \mu V^-(x)u \quad \text{in } \mathbb{R}^N$$
(1.2)

has a sequence of eigenvalues $0 < \mu_1 < \mu_2 \leq \mu_3 \leq \ldots \leq \mu_n \to \infty$ if $V^- \neq 0$ and $V^- \in L^{\frac{N}{2}}(\mathbb{R}^N)$. Let us denote the corresponding orthonormal system of eigenfunctions by $\varphi_1(x), \varphi_2(x), \cdots$. The sequence is complete in the Hilbert space $H^1_{A,V^+}(\mathbb{R}^N)$, where $H^1_{A,V^+}(\mathbb{R}^N)$ is the closure of $C_0^{\infty}(\mathbb{R}^N)$ with respect to the norm

$$||u|| = \left(\int_{\mathbb{R}^N} \left(|\nabla_A u|^2 + V^+(x)|u|^2\right) \mathrm{d}x\right)^{\frac{1}{2}},$$

and $\nabla_A u = (\nabla + iA)u$, $V^+(x) = \max(V(x), 0)$. The first eigenvalue μ_1 is defined by the Rayleigh quotient

$$\mu_{1} = \inf_{u \in H^{1}_{A,V^{+}}(\mathbb{R}^{N})} \frac{\int_{\mathbb{R}^{N}} (|\nabla_{A}u|^{2} + V^{+}(x)|u|^{2}) \mathrm{d}x}{\int_{\mathbb{R}^{N}} V^{-}(x)|u|^{2} \mathrm{d}x}.$$
(1.3)

Our main result is as follows.

Theorem 1.1 If $2 < \gamma < 2^*$, then

(i) problem (1.1) has a solution for $0 < \lambda < \mu_1$.

(ii) if $\int_{\mathbb{R}^N} Q(x) |\varphi_1|^{\gamma} dx < 0$ and $\lambda = \mu_1$, then problem (1.1) has a solution.

(iii) if $\int_{\mathbb{R}^N} Q(x) |\varphi_1|^{\gamma} dx < 0$, then there exists a constant $\delta > 0$ such that problem (1.1) admits at least two solutions for $\mu_1 < \lambda < \mu_1 + \delta$.

For the case of $1 < \gamma < 2$, we have

Theorem 1.2 (i) Problem (1.1) has a solution for $0 < \lambda < \mu_1$.

(ii) If $\int_{\mathbb{R}^N} Q(x) |\varphi_1|^{\gamma} dx < 0$, then there exists a constant $\delta > 0$ such that problem (1.1) admits at least two solutions for $\mu_1 < \lambda < \mu_1 + \delta$.

We point out that φ_1 may not belong to $L^{\gamma}(\mathbb{R}^N)$. The condition $\int_{\mathbb{R}^N} Q(x) |\varphi_1|^{\gamma} dx < 0$ is an extra assumption on Q.

In Section 2 we discuss the relation between the Nehari manifold and fibrering maps. Theorems 1.1 and 1.2 are proved in Sections 3 and 4, respectively. Download English Version:

https://daneshyari.com/en/article/4664968

Download Persian Version:

https://daneshyari.com/article/4664968

Daneshyari.com