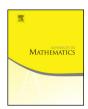


Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim



Cone-volume measure and stability [☆]

Károly J. Böröczky^{a,*}, Martin Henk^b

 Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Reltanoda u. 13-15, H-1053 Budapest, Hungary
 Technische Universität Berlin, Institut für Mathematik, Sekr. Ma 4-1, Straβe des 17 Juni 136, D-10623 Berlin, Germany

ARTICLE INFO

Article history:
Received 8 June 2016
Received in revised form 28
September 2016
Accepted 4 October 2016
Available online xxxx
Communicated by Erwin Lutwak

MSC: 52A40 52A20

Keywords:
Cone-volume measure
Subspace concentration condition
U-functional
Centro-affine inequalities
Log-Minkowski problem
Centroid
Polytope

ABSTRACT

We prove stability results for two central inequalities involving the cone-volume measure of a centered convex body: the subspace concentration conditions and the U-functional/volume inequality.

© 2016 Elsevier Inc. All rights reserved.

[♠] The first named author's research is supported in parts by NKFIH grants 116451 and 109789.

^{*} Corresponding author.

E-mail addresses: carlos@renyi.hu (K.J. Böröczky), henk@math.tu-berlin.de (M. Henk).

1. Introduction

Let \mathcal{K}^n be the set of all convex bodies in \mathbb{R}^n having non-empty interiors, i.e., $K \in \mathcal{K}^n$ is a convex compact subset of the n-dimensional Euclidean space \mathbb{R}^n with int $(K) \neq \emptyset$. As usual, we denote by $\langle \cdot, \cdot \rangle$ the inner product on $\mathbb{R}^n \times \mathbb{R}^n$ with associated Euclidean norm $\|\cdot\|$, and $S^{n-1} \subset \mathbb{R}^n$ denotes the (n-1)-dimensional unit sphere, i.e., $S^{n-1} = \{x \in \mathbb{R}^n : \|x\| = 1\}$.

For $K \in \mathcal{K}^n$ we write $S_K(\cdot)$ and $h_K(\cdot)$ to denote its surface area measure and support function, respectively, and ν_K to denote the Gauß map assigning the outer unit normal $\nu_K(x)$ to an $x \in \partial_* K$, where $\partial_* K$ consists of all points in the boundary ∂K of K having a unique outer normal vector (cf. Section 2 for precise definitions). If the origin o lies in $K \in \mathcal{K}^n$, the cone-volume measure of K on S^{n-1} is given by

$$V_K(\omega) = \int_{\omega} \frac{h_K(u)}{n} dS_K(u) = \int_{\nu_K^{-1}(\omega)} \frac{\langle x, \nu_K(x) \rangle}{n} d\mathcal{H}_{n-1}(x),$$
 (1.1)

where $\omega \subseteq S^{n-1}$ is a Borel set and, in general, $\mathcal{H}_k(x)$ denotes the k-dimensional Hausdorff measure. Instead of $\mathcal{H}_n(\cdot)$, we also write $V(\cdot)$ for the n-dimensional volume.

The name cone-volume measure stems from the fact that if K is a polytope with facets F_1, \ldots, F_m and corresponding outer unit normals u_1, \ldots, u_m , then

$$V_K(\omega) = \sum_{i=1}^m V([o, F_i]) \delta_{u_i}(\omega).$$
 (1.2)

Here δ_{u_i} is the Dirac delta measure on S^{n-1} concentrated at u_i , and for $x_1, \ldots, x_m \in \mathbb{R}^n$ and subsets $S_1, \ldots, S_l \subseteq \mathbb{R}^n$ we denote the convex hull of the set $\{x_1, \ldots, x_m, S_1, \ldots, S_l\}$ by $[x_1, \ldots, x_m, S_1, \ldots, S_l]$. With this notation $[o, F_i]$ is the cone with apex o and basis F_i .

In recent years, cone-volume measures have appeared and were studied in various contexts, see, e.g., F. Barthe, O. Guedon, S. Mendelson and A. Naor [3], K.J. Böröczky, E. Lutwak, D. Yang and G. Zhang [8,9], R. Gardner, D. Hug and W. Weil [20], M. Gromov and V.D. Milman [22], M. Ludwig [35], M. Ludwig and M. Reitzner [36], E. Lutwak, D. Yang and G. Zhang [41], A. Naor [44], A. Naor and D. Romik [45], G. Paouris and E. Werner [46], A. Stancu [51], G. Zhu [54,55], K.J. Böröczky and P. Hegedűs [5], L. Ma [43], Y. Huang, E. Lutwak, D. Yang and G. Zhang [32].

In particular, cone-volume measures are the subject of the logarithmic Minkowski problem. This is the particular interesting case p=0 of the general L_p -Minkowski problem which is at the core of the L_p -Brunn–Minkowski theory, one of the cornerstones of modern convex geometry. The L_p -Minkowski problem asks for a characterization of the L_p surface area measure

Download English Version:

https://daneshyari.com/en/article/4665008

Download Persian Version:

https://daneshyari.com/article/4665008

<u>Daneshyari.com</u>