Decay of eigenfunctions of elliptic PDE's, II

I. Herbst ${ }^{\text {a,* }}$, E. Skibsted ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, University of Virginia, Charlottesville, VA 22904, USA
${ }^{\text {b }}$ Institut for Matematiske Fag, Aarhus Universitet, Ny Munkegade 8000 Aarhus C, Denmark

A R T I C L E I N F O

Article history:

Received 12 June 2015
Received in revised form 27
September 2016
Accepted 14 October 2016
Available online xxxx
Communicated by Charles Fefferman
Keywords:
Eigenfunctions
Exponential decay
Microlocal analysis
Combinatorics

A B S T R A C T

We study exponential decay rates of eigenfunctions of selfadjoint higher order elliptic operators on \mathbb{R}^{d}. We are interested in decay rates as a function of direction. We show that the possible decay rates are to a large extent determined algebraically.
© 2016 Elsevier Inc. All rights reserved.

Contents

1. Introduction and previous results . 178
2. Directional decay rates, arbitrary ϕ. 180
3. Calculating the decay rate, $H \phi=\lambda \phi$. 183
4. An example, $\sigma_{l o c} \neq \sigma_{s}$. 191
5. The Agmon metric and a variational principle . 194
5.1. The set $\overline{\mathcal{E}}$ for the Green's function . 196
6. The set $\overline{\mathcal{E}}-$ smoothness . 197

Acknowledgment . 198
References . 199

[^0]
1. Introduction and previous results

Consider a real elliptic polynomial Q of degree q on \mathbb{R}^{d}. (Q elliptic means that for large $\xi \in \mathbb{R}^{d}, C|Q(\xi)|>|\xi|^{q}$ for some C.) We consider the operator $H=Q(p)+V(x)$, $p=-\mathrm{i} \nabla$, on $L^{2}\left(\mathbb{R}^{d}\right)$ with V bounded and measurable. For most of our results we assume $\lim _{|x| \rightarrow \infty} V(x)=0$ and additional decay properties of the potential. By the assumptions on Q the operator $Q(p)$ is self-adjoint with domain the standard Sobolev space of order q which consequently is also the domain of H. The goal of the paper is to study exponential decay of L^{2}-eigenfunctions of H with eigenvalue $\lambda \in \mathbb{R}$ as a function of direction. It is the second in a series of two papers on exponential decay. The first one is [11].

In [2], Agmon investigated the asymptotic behavior of the Green's function (the integral kernel of the inverse of $Q(p)-\lambda$ for spectral parameter λ in the resolvent set of $Q(p)$). In certain cases he obtained rather precise asymptotics of this function. Since we are investigating the asymptotic behavior of eigenfunctions of $Q(p)+V(x)$ with $V(x)$ small at infinity, one might suspect that the asymptotic behavior of the Green's function would determine the exponential rate of fall-off of the eigenfunction. This is false in a rather spectacular way: First, the eigenvalue λ may actually be in the spectrum of $Q(p)$ where the Green's function decays (at most) like an inverse power of $|x|$ while the eigenfunction decays exponentially. And second, whether or not the eigenvalue is in the spectrum of $Q(p)$, there may be several (global or local) decay rates which occur for different potentials V of compact support. Of course at least one of these decay rates will not reflect the asymptotic behavior of the Green's function. Already in [11] we gave examples of these phenomena. For another example see Section 4. These phenomena do not occur if $Q(\xi)=|\xi|^{2}$, at least if for example $V=o\left(|x|^{-1 / 2}\right)$ at infinity (see Theorems 1.3 and 3.6).

We first summarize some of the results of [11] which will be our starting point. References to previous work are given there. We define the global decay rate of $\phi \in L^{2}\left(\mathbb{R}^{d}\right)$ as

$$
\begin{equation*}
\sigma_{g}=\sup \left\{\sigma \geq 0 \mid \mathrm{e}^{\sigma|x|} \phi \in L^{2}\right\} \tag{1.1}
\end{equation*}
$$

It is intuitively clear that σ_{g} is determined by the directions of weakest exponential decay of ϕ.

In the rest of this section we assume that $(H-\lambda) \phi=0$ with $\lambda \in \mathbb{R}$ and $\phi \in L^{2}\left(\mathbb{R}^{d}\right)$. We will mostly assume there is a splitting of $V, V=V_{1}+V_{2}$, into bounded functions, with V_{1} smooth and real-valued and V_{2} measurable, with additional assumptions depending on the result.

Theorem 1.1. Under either of the following two conditions we can conclude that $\sigma_{g}>0$:

1) $\lambda \notin \operatorname{Ran} Q:=\left\{Q(\xi) \mid \xi \in \mathbb{R}^{d}\right\}$ and $V(x)=o(1)$ at infinity.
2) $\lambda \in \operatorname{Ran} Q$ but λ is not a critical value of $Q(\xi)$, ξ real, and in addition

https://daneshyari.com/en/article/4665012

Download Persian Version:

https://daneshyari.com/article/4665012

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: iwh@virginia.edu (I. Herbst), skibsted@math.au.dk (E. Skibsted).

