Advances in Mathematics 306 (2017) 344–426 $\,$

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Lagrangian Floer potential of orbifold spheres

MATHEMATICS

霐

Cheol-Hyun Cho $^{\rm a,*},$ Hansol Hong $^{\rm a},$ Sang-hyun Kim $^{\rm a},$ Siu-Cheong Lau $^{\rm b}$

 ^a Department of Mathematical Sciences, Research institute of Mathematics, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 151-747, Republic of Korea
^b Department of Mathematics, Harvard University, One Oxford Street, Cambridge, MA 02138, USA

ARTICLE INFO

Article history: Received 6 March 2014 Received in revised form 8 October 2016 Accepted 14 October 2016 Available online xxxx Communicated by the Managing Editors of AIM

Keywords: Lagrangian Floer homology Potential Mirror symmetry Holomorphic discs Mirror map Orbifold

ABSTRACT

For each sphere with three orbifold points, we construct an algorithm to compute the open Gromov–Witten potential, which serves as the quantum-corrected Landau–Ginzburg mirror and is an infinite series in general. This gives the first class of general-type geometries whose full potentials can be computed. As a consequence we obtain an enumerative meaning of mirror maps for elliptic curve quotients. Furthermore, we prove that the open Gromov–Witten potential is convergent, even in the general-type cases, and has an isolated singularity at the origin, which is an important ingredient of proving homological mirror symmetry.

© 2016 Elsevier Inc. All rights reserved.

Contents

1.	Introduction	345
2.	Tessellations of space-forms	353
3.	Lagrangian Floer potential for the Seidel Lagrangian	358
4.	Holomorphic polygons and their boundary words	363

* Corresponding author.

E-mail addresses: chocheol@snu.ac.kr (C.-H. Cho), hansol84@gmail.com (H. Hong), s.kim@snu.ac.kr (S.-h. Kim), s.lau@math.harvard.edu (S.-C. Lau).

http://dx.doi.org/10.1016/j.aim.2016.10.017 0001-8708/© 2016 Elsevier Inc. All rights reserved.

5.	Holomorphic discs and (a, b, c) -diagram	370
6.	Combinatorial Gauss–Bonnet formula	373
7.	Elementary move	376
8.	Potential in the hyperbolic case	383
9.	Potential in the (2,3,6)-case	387
10.	Potential in the (2,4,4)-case	394
11.	Enumerative meaning of mirror maps of elliptic curve quotients	397
12.	Spherical cases	402
13.	Applications	411
Ackno	owledgments	424
Refere	ences	424

1. Introduction

Mirror symmetry reveals deep relations between symplectic and complex geometry. Closed-string mirror symmetry provides a powerful tool to enumerate rational curves by using complex deformation theory of the mirror, and open-string mirror symmetry builds a bridge between Lagrangian Floer theory in symplectic geometry and sheaf theory in complex geometry. Mirror symmetry has brought many exciting results to geometry in the last two decades.

Let $\mathbb{P}^1_{a,b,c}$ be an orbifold sphere with $a, b, c \geq 2$ equipped with the Kähler structure ω with constant curvature descended from its universal cover, which is a space-form (either the sphere, Euclidean plane, or hyperbolic plane). The mirror of $\mathbb{P}^1_{a,b,c}$ is a Landau–Ginzburg superpotential W, which is a holomorphic function defined over \mathbb{C}^3 .

Closed-string mirror symmetry for $\mathbb{P}^1_{a,b,c}$ is a very rich subject and has been intensively studied. For instance, Frobenius structures and integrable systems of PDEs associated to W were constructed and used to understand the closed Gromov–Witten theory of $\mathbb{P}^1_{a,b,c}$ for $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} > 1$ by Milanov–Tseng [26] and Rossi [29] (and the general framework were studied in [34,13–15,20,11,12,16,30,36]). Explicit expressions of Saito's primitive forms [31,35,32,33] associated to W were studied and derived by Ishibashi–Shiraishi–Takahashi [21] and Li–Li–Saito [23]. Global mirror symmetry and LG/CY correspondence for $\mathbb{P}^1_{a,b,c}$ with $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 1$ were investigated and proved by Milanov–Ruan [24], Krawitz–Shen [22] and Milanov–Shen [25]. (There exist many literatures on various related topics, and here is just a partial list of them.) In the cases with $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} < 1$, the full superpotential W was not known but only the leading order terms $x^a + y^b + z^c - \sigma xyz$ (see [38,17]).

For open-string mirror symmetry, one direction of homological mirror symmetry conjecture was formulated and studied by Takahashi [40]. Roughly speaking it states that the derived category of coherent sheaves on $\mathbb{P}^1_{a,b,c}$ is equivalent to the derived Fukaya– Seidel category of the Landau–Ginzburg mirror. In the case of simple elliptic singularities (that is $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 1$) the conjecture was proved by Ueda [42]. The reversed direction of homological mirror symmetry, namely the equivalence between derived Fukaya category of $\mathbb{P}^1_{a,b,c}$ and the derived category of matrix factorizations on the Landau–Ginzburg mirror, was studied and derived in [10]. Download English Version:

https://daneshyari.com/en/article/4665017

Download Persian Version:

https://daneshyari.com/article/4665017

Daneshyari.com