

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

On the conjecture \mathcal{O} of GGI for G/P

MATHEMATICS

霐

Daewoong Cheong^{a,*}, Changzheng Li^{b,c}

 ^a Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul, 130-722, Republic of Korea
^b Department of Mathematics, Sun Yat-Sen University, Guangzhou 510275,

PR China

 $^{\rm c}$ Center for Geometry and Physics, Institute for Basic Science (IBS), Pohang 790-784, Republic of Korea

A R T I C L E I N F O

Article history: Received 17 December 2014 Received in revised form 21 October 2016 Accepted 23 October 2016 Available online xxxx Communicated by Roman Bezrukavnikov

ABSTRACT

In this paper, we show that general homogeneous manifolds G/P satisfy Conjecture \mathcal{O} of Galkin, Golyshev and Iritani which 'underlies' Gamma conjectures I and II of them. Our main tools are the quantum Chevalley formula for G/P and a theory on nonnegative matrices including Perron–Frobenius theorem.

© 2016 Elsevier Inc. All rights reserved.

MSC: 14N35 20G05

Keywords: Conjecture \mathcal{O} Gamma conjectures Quantum cohomology

* Corresponding author. E-mail addresses: daewoongc@kias.re.kr (D. Cheong), czli@ibs.re.kr (C. Li).

1. Introduction

Let X be a Fano manifold, i.e., a smooth projective variety whose anti-canonical line bundle is ample. The quantum cohomology ring $H^*(X, \mathbb{C})^1$ of X is a certain deformation of the classical cohomology ring $H^*(X, \mathbb{C})$ (§2.4 below). For $\sigma \in H^*(X, \mathbb{C})$, define the quantum multiplication operator $[\sigma]$ on $H^*(X, \mathbb{C})$ by $[\sigma](\tau) = \sigma \star \tau$ for $\tau \in H^*(X, \mathbb{C})$, where \star denotes the quantum product in $H^*(X, \mathbb{C})$. Let δ_0 be the absolute value of a maximal modulus eigenvalue of the operator $[c_1(X)]$, where $c_1(X)$ denotes the first Chern class of the tangent bundle of X. In [8], Galkin, Golyshev and Iritani say that X satisfies Conjecture \mathcal{O} if

- (1) δ_0 is an eigenvalue of $[c_1(X)]$.
- (2) The multiplicity of the eigenvalue δ_0 is one.
- (3) If δ is an eigenvalue of $[c_1(TX)]$ such that $|\delta| = \delta_0$, then $\delta = \delta_0 \xi$ for some *r*-th root of unity, where *r* is the Fano index of *X*.

In fact, in addition to Conjecture \mathcal{O} , Galkin, Golyshev and Iritani proposed two more conjectures called Gamma conjectures I, II, which can be stated under the Conjecture \mathcal{O} . Let us briefly introduce Gamma conjectures I, II in order to explain how it underlies them. Consider the quantum connection of Dubrovin

$$\nabla_{z\partial_z} = z\frac{\partial}{\partial z} - \frac{1}{z}(c_1(X)\star) + \mu,$$

acting on $H^*(X, \mathbb{C}) \otimes \mathbb{C}[z, z^{-1}]$, where μ is the grading operator on $H^*(X)$ defined by $\mu(\tau) = (k - \frac{\dim X}{2})\tau$ for $\tau \in H^{2k}(X, \mathbb{C})$. This has a regular singularity at $z = \infty$ and an irregular singularity at z = 0. Flat sections near $z = \infty$ can be constructed through flat sections near z = 0 classified by their exponential growth order, and they are put into correspondence with cohomology classes. To be precise, if X satisfies Conjecture \mathcal{O} , we can take a flat section $s_0(z)$ with the smallest asymptotics $\sim e^{-\delta_0/z}$ as $z \to +0$ along $\mathbb{R}_{>0}$. We transport $s_0(z)$ to $z = \infty$ and identify the corresponding class A_X called the principal asymptotic class of X. Then Gamma conjecture I states that the cohomology class A_X is equal to the Gamma class $\hat{\Gamma}_X$. Here $\hat{\Gamma}_X := \prod_{i=1}^n \Gamma(1 + \vartheta_i) \in H^*(X)$, where ϑ_i are the Chern roots of the tangent bundle TX for i = 1, ..., n. Under further assumption of semisimplicity of the ring $H^*(X)$, we can identify cohomology classes A_δ corresponding to each eigenvalue δ in similar way. The classes A_δ form a basis of $H^*(X, \mathbb{C})$. Then Gamma conjecture II, a refinement of a part of Dubrovin's conjecture [3], states that there is an exceptional collection $\{E_\delta \mid \delta$ eigenvalues of $[c_1(X)]\}$ of the derived category $D_{\rm coh}^b(X)$ such that for each δ ,

 $^{^{-1}}$ We use this notation for the quantum cohomology ring with the multiplication $\star,$ and without quantum variables.

Download English Version:

https://daneshyari.com/en/article/4665026

Download Persian Version:

https://daneshyari.com/article/4665026

Daneshyari.com