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This paper studies the Hardy–Littlewood–Sobolev (HLS) 
inequality and the Riesz transforms for fractional integration 
associated to weighted orthogonal polynomial expansions on 
spheres, balls and simplexes with weights being invariant 
under a general finite reflection group on Rd. The sharp 
index for the validity of the HLS inequality is determined and 
the Lp-boundedness of the Riesz transforms is established. 
In particular, our results extend a classical inequality of 
Muckenhoupt and Stein on conjugate ultraspherical
polynomial expansions. Our idea is based on a new
decomposition of the Dunkl–Laplace–Beltrami operator on 
the sphere and some sharp asymptotic estimates of the 
weighted Christoffel functions.
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1. Introduction and main results

The classical Hardy–Littlewood–Sobolev (HLS) fractional integration theorem states 
that if 0 < α < d and 1 < p ≤ q < ∞, then the HLS inequality,

‖(−Δ)−α/2f‖Lq(Rd) ≤ C‖f‖Lp(Rd), ∀f ∈ Lp(Rd), (1.1)

holds if and only if α = d( 1
p − 1

q ) (see [38, Chapter V]), where ∂j = ∂
∂xj

and (−Δ)β

denotes the fractional power of the Laplacian Δ =
∑d

j=1 ∂
2
j . This theorem implies the 

Sobolev embedding theorem essentially by the relationship between the Riesz transforms 
Rj = ∂j(−Δ)− 1

2 , j = 1, 2 · · · , d and the fractional integral operators (−Δ)−α/2 (i.e. the 
Riesz potentials). The HLS inequality and the Riesz transforms on Rd have been extended 
to many different settings with fractional integration being mostly defined via orthogonal 
expansions or distributional Fourier transform (see, for instance, [1–3,6,9,27,32,37,38,36,
40]).

In this paper, we will study the HLS inequality and the Riesz transforms for fractional 
integration associated to weighted orthogonal polynomial expansions (WOPEs) on the 
sphere Sd−1 := {x ∈ R

d : ‖x‖ = 1}, on the ball Bd := {x ∈ R
d : ‖x‖ ≤ 1} and on the 

simplex Td := {x ∈ R
d : x1, · · · , xd ≥ 0, |x| ≤ 1} with weights being invariant under 

a general finite reflection group on Rd. Here and throughout the paper, ‖ · ‖ denotes 
the Euclidean norm in Rd, and |x| :=

∑d
j=1 |xj | denotes the �1-norm of Rd. In this 

introduction we shall describe our main results for WOPEs on the sphere Sd−1 with a 
“minimum” of definitions. Necessary details and appropriate definitions will be given in 
the next section.

Let G ⊂ O(d) be a finite reflection group on Rd. For v ∈ R
d \ {0}, we denote by σv

the reflection with respect to the hyperplane perpendicular to v; that is,

σvx = x− 2〈x, v〉
‖v‖2 v, x ∈ R

d,

where 〈·, ·〉 denotes the Euclidean inner product on Rd. Let R be the root system of G, 
normalized so that 〈v, v〉 = 2 for all v ∈ R, and fix a positive subsystem R+ of R. It 
is known that (see, for instance, [33]) the set of reflections in G coincides with the set 
{σv : v ∈ R+}, which also generates the group G. The dimension of the linear subspace 
of Rd spanned by all elements from the root system R is called the rank of R and is 
denoted by rank(R). Let κ : R → [0, ∞), v �→ κv = κ(v) be a nonnegative multiplicity 
function on R (i.e., a nonnegative G-invariant function on R). Let hκ denote the weight 
function on Rd defined by

hκ(x) :=
∏

v∈R+

|〈x, v〉|κv , x ∈ R
d. (1.2)

The function hκ is G-invariant and homogeneous of degree |κ| :=
∑

v∈R+
κv.
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