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For a convex body on the Euclidean unit sphere the spherical 
convex floating body is introduced. The asymptotic behavior 
of the volume difference of a spherical convex body and its 
spherical floating body is investigated. This gives rise to a 
new spherical area measure, the floating area. Remarkably, 
this floating area turns out to be a spherical analogue to the 
classical affine surface area from affine differential geometry. 
Several properties of the floating area are established.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The floating body appeared first in the work of C. Dupin [16] in 1822. By the end of 
the 20th century this basic notion witnessed a surge in interest. In 1990, a seminal new 
definition was given by C. Schütt and E. M. Werner [72] and independently by I. Bárány
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and D. G. Larman [8]. They introduced the convex floating body as the intersection of 
all halfspaces whose hyperplanes cut off a set of fixed volume of a convex body (compact 
convex set). In contrast to the original definition, the convex floating body is always 
convex and coincides with Dupin’s floating body if it exists.

One of the many reasons that the (convex) floating body has attracted considerable 
interest in recent decades is that it allows extensions of the classical notion of affine 
surface area to general convex bodies in all dimensions. Indeed, as was shown by K. Le-
ichtweiß [38] and C. Schütt and E. M. Werner [72], the affine surface area arises as a 
limit of the volume difference of the convex body and its floating body.

Affine surface area was introduced by W. Blaschke [11] in 1923 for smooth convex 
bodies in Euclidean space of dimensions 2 and 3. Even though it proved much more 
difficult to extend affine surface area to general convex bodies than other notions, like 
surface area measures or curvature measures, successively such extensions were achieved. 
Aside from the aforementioned successful approach via the (convex) floating body, E. 
Lutwak [46] was able to provide an extension in 1991 by a completely different method 
and also proved the long conjectured upper semicontinuity of affine surface area.

As the name suggests, affine surface area is invariant under volume preserving affine 
transformations. Furthermore it is a valuation on the space of convex bodies and, as 
mentioned, upper semicontinuous. M. Ludwig and M. Reitzner [43] proved that these 
three properties essentially characterize affine surface area. They showed that a valuation 
on convex bodies that is upper semicontinuous and invariant under volume preserving 
affine transformations is a linear combination of affine surface area, volume, and the 
Euler characteristic. Building on results of M. Ludwig and M. Reitzner [44], this result 
was recently considerably strengthened by C. Haberl and L. Parapatits [30].

Affine surface area is among the most powerful tools in equiaffine differential geometry 
(see B. Andrews [5,6], A. Stancu [76,77], M. Ivaki [33] and M. Ivaki and A. Stancu 
[34]). It appears naturally as the Riemannian volume of a smooth convex hypersurface 
with respect to the affine metric (or Berwald–Blaschke metric), see e.g. the thorough 
monograph of K. Leichtweiß [39] or the book by K. Nomizu and T. Sasaki [56]. In 
particular the upper semicontinuity proved to be critical in the solution of the affine 
Plateau problem by N. S. Trudinger and X.-J. Wang [78].

A variant of the convex floating body provided a geometric interpretation of Lp-affine 
surface area, see C. Schütt and E. Werner [74]. Lp-affine surface area is a generalization 
of affine surface area in the Lp-Brunn–Minkowski theory introduced by E. Lutwak [47]
(also see D. Hug [32] and M. Meyer and E. M. Werner [55]). M. Ludwig and M. Reitzner 
[44] recently generalized Lp-affine surface area to Orlicz affine surface area.

One of the fundamental inequalities for affine surface area is the affine isoperimetric 
inequality (see W. Blaschke [11], L. A. Santaló [61] and C. M. Petty [59]) which states 
that, among all convex bodies with fixed volume, ellipsoids have the largest affine surface 
area. This inequality is related to various other inequalities, see E. Lutwak [45] and 
E. Lutwak, D. Yang and G. Zhang [50]. In particular, the affine isoperimetric inequality 
implies the Blaschke–Santaló inequality and it proved to be the key ingredient in the 
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