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Macdonald processes are certain probability measures on 
two-dimensional arrays of interlacing particles introduced 
by Borodin and Corwin in [7]. They are defined in terms 
of nonnegative specializations of the Macdonald symmetric 
functions and depend on two parameters q, t ∈ [0; 1). Our 
main result is a classification of continuous time, nearest 
neighbor Markov dynamics on the space of interlacing arrays 
that act nicely on Macdonald processes.
The classification unites known examples of such dynamics 
and also yields many new ones.
When t = 0, one dynamics leads to a new integrable 
interacting particle system on the one-dimensional lattice, 
which is a q-deformation of the PushTASEP (= long-range 
TASEP).
When q = t, the Macdonald processes become the Schur 
processes of Okounkov and Reshetikhin [41]. In this degenera-
tion, we discover new Robinson–Schensted-type correspond-
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ences between words and pairs of Young tableaux that govern 
some of our dynamics.

© 2016 Published by Elsevier Inc.
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1. Introduction

Since the end of 1990s there has been a significant progress in understanding the 
long time nonequilibrium behavior of certain integrable (1 + 1)-dimensional interacting 
particle systems and random growth models in the KPZ universality class. The miracle 
of integrability in most cases (with the notable exception of the partially asymmetric 
simple exclusion process) can be traced to an extension of the Markovian evolution to 
a suitable (2 + 1)-dimensional random growth model whose remarkable properties yield 
the solvability.

So far there have been two sources of such extensions. The first one originated 
from a classical combinatorial bijection known as the Robinson–Schensted–Knuth cor-
respondence (RSK, for short). The RSK was first applied in this context by Jo-
hansson [25] and Baik–Deift–Johansson [1], and the dynamical perspective has been 
substantially developed by O’Connell [34–36], Biane–Bougerol–O’Connell [4] (see also 
Chhaibi [17]), Corwin–O’Connell–Seppäläinen–Zygouras [18], O’Connell–Pei [37], see 
also O’Connell–Seppäläinen–Zygouras [38].

The second approach was introduced by Borodin–Ferrari [11], and it was based on 
an idea of Diaconis–Fill [20] of extending intertwined “univariate” Markov chains to a 
“bivariate” Markov chains that projects to either of the initial ones. This approach was 
further developed in Borodin–Gorin [12], Borodin–Gorin–Rains [15], Borodin [5], Betea 
[2], and Borodin–Corwin [7]. In what follows we use the term push-block dynamics for 
the Markov chains constructed in this fashion (the reason for such a term will become 
clear later).

While the two resulting (2 + 1)-dimensional Markov processes that extend the same 
(1 + 1)-dimensional one share many properties — same fixed time marginals, same pro-
jections to many (1 + 1)-dimensional sections — the relation between them have so far 
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