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field theories.

To the memory of Andrei Zelevinsky ‘We show that such structures can be systematically produced

in any number of dimensions by using the geometry of
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“coefficient system”, a dg-category R with a semi-orthogonal
decomposition and an Ly-algebra g. We show that g is quasi-
isomorphic to the ordered Hochschild complex of R, governing
deformations preserving the semi-orthogonal decomposition.
This allows us to give a more precise mathematical formulation
of the (conjectural) alternative description of the Fukaya—
Seidel category of a Kahler manifold endowed with a holo-
morphic Morse function.
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0. Introduction

The words “algebra of the infrared” in the title refer to the physics paper [10] by
Gaiotto, Moore and Witten, to which (or, rather, to a part of which) our article is a
mathematical commentary.

In [10] the authors developed an algebraic formalism for the study of certain
2-dimensional massive quantum field theories with (2,2) supersymmetry. One of the
main algebraic structures introduced in the [10] is the Lo.-algebra of webs, associated
with a generic finite subset A C R? in the plane. Physically, elements of A correspond
to vacua of the theory. A web is a plane graph with faces marked by elements of A with
an additional condition on the direction of edges, see §13 below for a review. Further, a
choice of a half-plane containing A determines an A..-algebra (or an A.o-category, if one
introduces a coefficient system). This A.-category has an “upper-triangular structure”,
i.e. a semi-orthogonal decomposition.

Using certain “moduli spaces of (-instantons” the authors of [10] describe a class of de-
formations of the above A..-category which describe the D-brane categories for a partic-
ular class of (2,2) supersymmetric theories: Landau—Ginzburg models. Mathematically,
the D-brane A.,-categories corresponding to LG models are known as Fukaya—Seidel
categories [16,23].

We reinterpret and develop the algebraic structures proposed in [10] in a way that
allows a generalization to higher dimensions (R¢, d > 2 instead of just R?). It turns out
that using the dual language of polygons rather than webs, one quickly uncovers certain
structures well-known in toric geometry, most notably, secondary polytopes, see [11].
One of the subtle and surprising points of the GMW construction is the fact that the
differential they define, satisfies d?> = 0. In our approach this fact becomes obvious: the
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