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show that when V' is 3-dimensional, each of these rings carries
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Introduction

Homogeneous coordinate rings of Grassmannians are among the most important ex-
amples of cluster algebras. Cluster structures in these rings [23,50] play a prominent
role in applications of cluster theory arising in connection with integrable systems, al-
gebraic Lie theory, Poisson geometry, Teichmiiller theory, total positivity, and beyond;
see, e.g., [21,24,25,29,32] and references therein. Within cluster algebra theory proper,
Grassmannians provide the most concrete and accessible examples of naturally defined
cluster algebras of infinite mutation type.

Despite their importance, cluster structures on Grassmannians are not well understood
at all, apart from a few special cases. Just a tiny subset of their cluster variables have
been explicitly described; we do not know which quivers appear in their seeds; we do not
understand the structure of their underlying cluster complexes; and so on.

Let Gry n denote the Grassmann manifold of k-subspaces in an N-dimensional com-
plex vector space. The corresponding cluster algebra has finite type (i.e., has finitely
many seeds) if and only if (k — 2)(N — k —2) < 3. All of the problems mentioned above
are open for any Grassmannian of infinite cluster type, so in particular for k = 3, N > 9.
(The case k = 2 has been well understood since the early days of cluster algebras, see [16,
Section 12.2].)

We advocate the point of view that many aspects of cluster structures on Grassman-
nians are best understood within a broader range of examples coming from classical
invariant theory. Recall that the homogeneous coordinate ring of Gry, y (with respect to
a Pliicker embedding) is isomorphic to the ring of SL(V') invariants of N-tuples of vectors
in a k-dimensional complex vector space V. More general rings of SL(V') invariants of
collections of vectors and linear forms have been thoroughly studied by classical invariant
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