

Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Advances in Mathematics

www.elsevier.com/locate/aim

Global solutions for a supercritical drift–diffusion equation

MATHEMATICS

厥

Jan Burczak ^a, Rafael Granero-Belinchón ^b*,*[∗]

^a *Institute of Mathematics of the Polish Academy of Sciences, Warsaw, 21 00-656, Poland* ^b *Department of Mathematics, University of California, Davis, CA 95616, USA*

A R T I C L E I N F O A B S T R A C T

Article history: Received 29 May 2015 Received in revised form 16 March 2016 Accepted 17 March 2016 Available online 31 March 2016 Communicated by Charles Fefferman

MSC: 35K55 35K65

Keywords: Drift–diffusion equation Nonlocal diffusion Global existence

We study the global existence of solutions to a one-dimensional drift–diffusion equation with logistic term, generalizing the classical parabolic–elliptic Keller–Segel aggregation equation arising in mathematical biology. In particular, we prove that there exists a global weak solution, if the order of the fractional diffusion $\alpha \in (1 - c_1, 2]$, where $c_1 > 0$ is an explicit constant depending on the physical parameters present in the problem (chemosensitivity and strength of logistic damping). Furthermore, in the range $1 - c_2 < \alpha \leq 2$ with $0 < c_2 < c_1$, the solution is globally smooth. Let us emphasize that when α < 1, the diffusion is in the supercritical regime.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The drift–diffusion equation

$$
\partial_t u = -\nu \Lambda^\alpha u + \nabla \cdot (u B(u)) + f(u), \tag{1}
$$

* Corresponding author. *E-mail addresses:* jb@impan.pl (J. Burczak), rgranero@math.ucdavis.edu (R. Granero-Belinchón).

<http://dx.doi.org/10.1016/j.aim.2016.03.011> 0001-8708/© 2016 Elsevier Inc. All rights reserved. where $B(u)$ is typically a vector of nonlocal operators and $\Lambda = \sqrt{-\Delta}$ (see [\(11\)](#page--1-0) below), appears widely in applications. The parameter $0 \leq \alpha \leq 2$ is the order of the diffusion and it measures the strength of the viscous effects.

For instance, the two dimensional incompressible Navier–Stokes equations in its vorticity formulation can be written as

$$
\partial_t u = \Delta u + \nabla \cdot (u \nabla^{\perp} \Delta^{-1} u),\tag{2}
$$

where $\nabla^{\perp} = (-\partial_x, \partial_{x_1})$. This equation governs the motion of two-dimensional, incompressible, homogeneous fluids in absence of forcing (see $[48]$). Equation (2) can be recovered from equation [\(1\)](#page-0-0) by taking $\nu = 1$, $\alpha = 2$, $f = 0$ and $B = \nabla^{\perp} \Delta^{-1}$.

Another famous equation akin to [\(1\)](#page-0-0) is the parabolic–elliptic simplification of the Keller–Segel system with logistic source

$$
\partial_t u = \Delta u + \nabla \cdot (u \nabla \Delta^{-1} u) + \mu u - r u^2. \tag{3}
$$

It appears as a model of *chemotaxis*, i.e. the proliferation and motion of cells (see the pioneer work of E. Keller & L. Segel [\[41\]](#page--1-0) and the reviews by A. Blanchet [\[9\]](#page--1-0) and Hillen & Painter $[40]$, whose cell-kinetics model (M8) is the doubly-parabolic version of (3)). Here $u \geq 0$ is the density of cells. To obtain (3) from [\(1\)](#page-0-0) one takes $\nu = 1$, $\alpha = 2$, $B = \nabla \Delta^{-1}$ and $f = \mu u - \nu^2$. Equation (3) is also a model of gravitational collapse (see the works by Biler [\[5\]](#page--1-0) and Ascasibar, Granero-Belinchón & Moreno [\[1\]\)](#page--1-0).

Furthermore, in one spatial dimension, the equation

$$
\partial_t u = -\partial_x (uHu),\tag{4}
$$

where H denotes the Hilbert transform (see (10) and (12) below), has been proposed as a model of the dynamics of a dislocation density *u* (see [\[31\]](#page--1-0) and the work by Biler, Karch & Monneau $[7]$. Equation (4) appears also in a totally different context, namely as a one-dimensional model of the surface quasi-geostrophic equation (see Castro & Córdoba [\[16\]\)](#page--1-0). In order to recover (4) from [\(1\),](#page-0-0) we choose $\nu = 0$, $f = 0$ and $B = -H$.

Finally, notice that the famous Burgers equation

$$
\partial_t u = -\Lambda^\alpha u - u \partial_x u \tag{5}
$$

can be obtained from [\(1\)](#page-0-0) by taking $B(u) = -u/2$.

In all these equations there is a competition between the diffusion term given by

Λ*^α*

and the transport term

$$
\nabla \cdot (uB(u)).
$$

Download English Version:

<https://daneshyari.com/en/article/4665103>

Download Persian Version:

<https://daneshyari.com/article/4665103>

[Daneshyari.com](https://daneshyari.com)