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We introduce a quasisymmetric refinement of Stanley’s
chromatic symmetric function. We derive refinements of
both Gasharov’s Schur-basis expansion of the chromatic
symmetric function and Chow’s expansion in Gessel’s basis
of fundamental quasisymmetric functions. We present a
conjectural refinement of Stanley’s power sum basis expansion,
which we prove in special cases. We describe connections
between the chromatic quasisymmetric function and both
the g-Eulerian polynomials introduced in our earlier work
and, conjecturally, representations of symmetric groups on
cohomology of regular semisimple Hessenberg varieties, which
have been studied by Tymoczko and others. We discuss
an approach, using the results and conjectures herein, to
the e-positivity conjecture of Stanley and Stembridge for
incomparability graphs of (3 4 1)-free posets.
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1. Introduction

We study a quasisymmetric refinement of Stanley’s chromatic symmetric function. We
present refined results for our quasisymmetric functions, some proved herein and some
conjectured, analogous to known results and conjectures of Chow, Gasharov, Stanley and
Stanley—Stembridge on chromatic symmetric functions. We present also a conjecture re-
lating our work to work of Tymoczko and others on representations of symmetric groups
on the cohomology of regular semisimple Hessenberg varieties. Some of the results in
this paper were presented, without proof, in our survey paper [30]. We assume through-
out that the reader is familiar with basic properties of symmetric and quasisymmetric
functions, as discussed in [34, Chapter 7].

Let G = (V, E) be a graph. Given a subset S of the set P of positive integers, a proper
S-coloring of G is a function k : V. — S such that k(i) # k(j) whenever {i,j} € E.
Let C(G) be the set of proper P-colorings of G. In [32], Stanley defined the chromatic
symmetric function of G as

Xao(x) = Z Xk,
)

KEC(G

where x := (x1,Z2,...) is a sequence of commuting indeterminants and x, :=
HUEV z”(v) :

It is straightforward to confirm that Xg(x) lies in the Q-algebra Ag of symmetric
functions in x1, z9, ... with rational coefficients. The chromatic symmetric function gives
more information about proper colorings than the well-studied chromatic polynomial
Xc : P — N. (Recall that xg(m) is the number of proper {1,2,..., m}-colorings of G.)
Indeed, Xg(1™) = xg(m), where Xg(1™) is the specialization of Xg(x) obtained by
setting x; = 1 for 1 < i < m and x; = 0 for ¢ > m. Chromatic symmetric functions are
studied in various papers, including [32,33,12,13,5,6,44,23,22,19,16].
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