

Contents lists available at ScienceDirect

Advances in Mathematics

Quotients of Banach algebras acting on L^p -spaces

Eusebio Gardella*, Hannes Thiel

Mathematisches Institut, Fachbereich Mathematik und Informatik der Universität Münster, Einsteinstrasse 62, 48149 Münster, Germany

ARTICLE INFO

Article history:
Received 7 August 2015
Received in revised form 19 March 2016
Accepted 29 March 2016
Available online 6 April 2016
Communicated by Dan Voiculescu

MSC: primary 47L10, 43A15 secondary 46J10

 $\begin{tabular}{ll} Keywords: \\ Quotients of Banach algebras \\ L^p\mbox{-space} \\ Banach algebra of $p\mbox{-pseudofunctions} \end{tabular}$

ABSTRACT

We show that the class of Banach algebras that can be isometrically represented on an L^p -space, for $p \neq 2$, is not closed under quotients. This answers a question asked by Le Merdy 20 years ago. Our methods are heavily reliant on our earlier study of Banach algebras generated by invertible isometries of L^p -spaces.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

An operator algebra is a closed subalgebra of the algebra $\mathcal{B}(\mathcal{H})$ of bounded linear operators on a Hilbert space \mathcal{H} . If A is an operator algebra and $I \subseteq A$ is a closed,

E-mail addresses: gardella@uni-muenster.de (E. Gardella), hannes.thiel@uni-muenster.de (H. Thiel). URL: http://wwwmath.uni-muenster.de/u/hannes.thiel/ (H. Thiel).

[†] The first named author was partially supported by the D.K. Harrison Prize from the University of Oregon. The second named author was partially supported by the Deutsche Forschungsgemeinschaft (SFB 878).

^{*} Corresponding author.

two-sided ideal, then the quotient Banach algebra A/I is again an operator algebra, that is, it can be isometrically represented on a Hilbert space. This classical result is due to Lumer and Bernard, although the commutative case (when A is a uniform algebra) was proved earlier by Cole.

In Problem 3.8 of [7], Christian Le Merdy raised the question of whether this result can be generalized to Banach algebras acting on L^p -spaces for $p \in [1, \infty)$. More precisely, if $\mathscr E$ is a class of Banach spaces, we say that a Banach algebra A is an $\mathscr E$ -operator algebra if there exist a Banach space E in $\mathscr E$ and an isometric homomorphism $\varphi \colon A \to \mathcal B(E)$. Given $p \in [1, \infty)$, we consider the class L^p of L^p -spaces, the class SL^p of Banach spaces that are isometrically isomorphic to subspaces of L^p -spaces, and the class QSL^p of Banach spaces that are quotients of SL^p -spaces.

The Bernard–Cole–Lumer Theorem asserts that L^2 -operator algebras are closed under quotients. In Corollary 3.2 of [7], Le Merdy showed that QSL^p -operator algebras are closed under quotients. In Corollary 1.5.2.3 of [6], Marius Junge showed the analogous result for SL^p -operator algebras. Since the classes QSL^2 and SL^2 both agree with L^2 , the results of Le Merdy and Junge are generalizations of the Bernard–Cole–Lumer Theorem.

As the authors point out in [7] and [6], the arguments used there are not suitable to deal with the more natural class of L^p -operator algebras. Indeed, the question of whether L^p -operator algebras are closed under quotients, for $p \neq 2$, remained open for 20 years. The case p=1 of this question has recently been answered negatively in Theorem 6.2 of [2], using a classical result of Malliavin on the failure of spectral synthesis for $\ell^1(\mathbb{Z})$. In this paper, we answer negatively the remaining cases of the question. (Even for p=1, we construct new examples of quotients of $\ell^1(\mathbb{Z})$ which cannot be represented on an L^1 -space. These are, in particular, semisimple, unlike those constructed in [2].)

For $p \in [1, \infty)$, we consider the algebra $F^p(\mathbb{Z})$ of p-pseudofunctions on \mathbb{Z} . This algebra was introduced in the early 70's by Herz in [5], who denoted it $PF_p(\mathbb{Z})$. Algebras of p-pseudofunctions (also for locally compact groups other than \mathbb{Z}) have been studied in a number of places: [8,11,2,3,1], just to list a few.

The algebra $F^p(\mathbb{Z})$ is a semisimple, commutative Banach algebra with spectrum S^1 . Given an open set V in S^1 , we let I_V denote the largest closed two-sided ideal of $F^p(\mathbb{Z})$ that is supported on V. For $p \in [1, \infty) \setminus \{2\}$, and V neither empty nor dense in S^1 , we show that $F^p(\mathbb{Z})/I_V$ is not an L^p -operator algebra; see Theorem 2.5. In fact, we even show that there is no injective, contractive homomorphism with closed range from $F^p(\mathbb{Z})/I_V$ to the algebra of bounded linear operators on any L^q -space for $q \in [1, \infty)$; see Remark 2.6.

Given the recent attention received by L^p -operator algebras, deciding whether these are closed under quotients becomes more relevant and technically useful. For example, consider the L^p -analogs \mathcal{O}_n^p of the Cuntz algebras; see [10]. These are all simple, and any contractive, non-zero representation of any of them on an L^p -space is automatically injective (in fact, isometric). For p=2, these two properties are well-known to be equivalent. However, for $p\neq 2$, they are not, since quotients of L^p -operator algebras are not in general representable on L^p -spaces. These two properties of \mathcal{O}_n^p therefore

Download English Version:

https://daneshyari.com/en/article/4665113

Download Persian Version:

https://daneshyari.com/article/4665113

<u>Daneshyari.com</u>