

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Closed characteristics on compact convex hypersurfaces in \mathbb{R}^8

Wei Wang ¹

Key Laboratory of Pure and Applied Mathematics, School of Mathematical Science, Peking University, Beijing 100871, People's Republic of China

ARTICLE INFO

Article history:
Received 30 April 2014
Accepted 9 March 2016
Available online 27 April 2016
Communicated by Erwin Lutwak

MSC: 58E05 37J45 34C25

Keywords:
Compact convex hypersurfaces
Closed characteristics
Hamiltonian systems
Morse theory
Index iteration theory

ABSTRACT

In this paper, we prove there exist at least four geometrically distinct closed characteristics on every compact convex hypersurface Σ in \mathbf{R}^8 . This gives a confirmed answer in the case n=4 to a long standing conjecture in Hamiltonian analysis since the time of A. M. Liapounov in 1892 (cf. P. 235 of [4]).

© 2016 Elsevier Inc. All rights reserved.

1. Introduction and main results

In this paper, let Σ be a C^3 compact convex hypersurface in \mathbf{R}^{2n} , i.e., Σ is the boundary of a compact and strictly convex region U in \mathbf{R}^{2n} . We denote the set of all such hypersurfaces by $\mathcal{H}(2n)$. Without loss of generality, we suppose that U contains the

E-mail addresses: alexanderweiwang@gmail.com, wangwei@math.pku.edu.cn.

Partially supported by National Natural Science Foundation of China No. 11222105, Foundation for the Author of National Excellent Doctoral Dissertation of PR China No. 201017.

origin. We consider closed characteristics (τ, y) on Σ , which are solutions of the following problem

$$\begin{cases}
\dot{y} = JN_{\Sigma}(y), \\
y(\tau) = y(0),
\end{cases}$$
(1.1)

where $J=\begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix}$ is the standard symplectic matrix in \mathbf{R}^{2n} , I_n is the identity matrix in \mathbf{R}^n , $\tau>0$ is the period of y, $N_{\Sigma}(y)$ is the outward normal vector of Σ at y normalized by the condition $N_{\Sigma}(y)\cdot y=1$. Here $a\cdot b$ denotes the standard inner product of $a,b\in\mathbf{R}^{2n}$. A closed characteristic (τ,y) is prime, if τ is the minimal period of y. Two closed characteristics (τ,y) and (σ,z) are geometrically distinct, if $y(\mathbf{R})\neq z(\mathbf{R})$. We denote by $\mathcal{T}(\Sigma)$ the set of all geometrically distinct closed characteristics on Σ . A closed characteristic (τ,y) is non-degenerate, if 1 is a Floquet multiplier of y of precisely algebraic multiplicity 2, and is elliptic, if all the Floquet multipliers of y locate on $\mathbf{U}=\{z\in\mathbf{C}\,|\,|z|=1\}$, i.e., the unit circle in the complex plane. It is hyperbolic, if 1 is a double Floquet multiplier of it and all the other Floquet multipliers of y are away from \mathbf{U} .

It is surprising enough that A. M. Liapounov in [14] of 1892 and J. Horn in [13] of 1903 were able to prove the following great result: Suppose $H: \mathbf{R}^{2n} \to \mathbf{R}$ is analytic, $\sigma(JH''(0)) = \{\pm \sqrt{-1}\omega_1, \ldots, \pm \sqrt{-1}\omega_n\}$ are purly imaginary and satisfy $\frac{\omega_i}{\omega_j} \notin \mathbf{Z}$ for all i, j. Then there exists $\epsilon_0 > 0$ small enough such that

$$^{\#}\mathcal{T}(H^{-1}(\epsilon)) \ge n, \qquad \forall \ 0 < \epsilon \le \epsilon_0.$$
 (1.2)

This deep result was greatly improved by A. Weinstein in [26] of 1973. He was able to prove that for $H \in C^2(\mathbf{R}^{2n}, \mathbf{R})$, if H''(0) is positive definite, then there exists $\epsilon_0 > 0$ small such that (1.2) still holds. In [6], I. Ekeland and J. Lasry proved that if there exists $x_0 \in \mathbf{R}^{2n}$ such that

$$r \le |x - x_0| \le R, \quad \forall x \in \Sigma$$

and $\frac{R}{r} < \sqrt{2}$, then $\#\mathcal{T}(\Sigma) \geq n$.

Note that we have the following example of weakly non-resonant ellipsoid: Let $r = (r_1, \ldots, r_n)$ with $r_i > 0$ for $1 \le i \le n$. Define

$$\mathcal{E}_n(r) = \left\{ z = (x_1, \dots, x_n, y_1, \dots, y_n) \in \mathbf{R}^{2n} \mid \frac{1}{2} \sum_{i=1}^n \frac{x_i^2 + y_i^2}{r_i^2} = 1 \right\}$$

where $\frac{r_i}{r_j} \notin \mathbf{Q}$ whenever $i \neq j$. In this case, the corresponding Hamiltonian system is linear and all the solutions of (1.1) can be computed explicitly. Thus it is easy to verify that $^{\#}\mathcal{T}(\mathcal{E}_n(r)) = n$ and all the closed characteristics on $\mathcal{E}_n(r)$ are elliptic and

Download English Version:

https://daneshyari.com/en/article/4665129

Download Persian Version:

https://daneshyari.com/article/4665129

Daneshyari.com