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In this paper, we prove there exist at least four geometrically 
distinct closed characteristics on every compact convex 
hypersurface Σ in R8. This gives a confirmed answer in the 
case n = 4 to a long standing conjecture in Hamiltonian 
analysis since the time of A. M. Liapounov in 1892 (cf. P. 235 
of [4]).
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1. Introduction and main results

In this paper, let Σ be a C3 compact convex hypersurface in R2n, i.e., Σ is the 
boundary of a compact and strictly convex region U in R2n. We denote the set of all 
such hypersurfaces by H(2n). Without loss of generality, we suppose that U contains the 
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origin. We consider closed characteristics (τ, y) on Σ, which are solutions of the following 
problem {

ẏ = JNΣ(y),
y(τ) = y(0), (1.1)

where J =
(

0 −In
In 0

)
is the standard symplectic matrix in R2n, In is the identity 

matrix in Rn, τ > 0 is the period of y, NΣ(y) is the outward normal vector of Σ at 
y normalized by the condition NΣ(y) · y = 1. Here a · b denotes the standard inner 
product of a, b ∈ R2n. A closed characteristic (τ, y) is prime, if τ is the minimal period 
of y. Two closed characteristics (τ, y) and (σ, z) are geometrically distinct, if y(R) �=
z(R). We denote by T (Σ) the set of all geometrically distinct closed characteristics 
on Σ. A closed characteristic (τ, y) is non-degenerate, if 1 is a Floquet multiplier of y of 
precisely algebraic multiplicity 2, and is elliptic, if all the Floquet multipliers of y locate 
on U = {z ∈ C | |z| = 1}, i.e., the unit circle in the complex plane. It is hyperbolic, if 1
is a double Floquet multiplier of it and all the other Floquet multipliers of y are away 
from U.

It is surprising enough that A. M. Liapounov in [14] of 1892 and J. Horn in [13] of 
1903 were able to prove the following great result: Suppose H : R2n → R is analytic, 
σ(JH ′′(0)) = {±

√
−1ω1, . . . , ±

√
−1ωn} are purly imaginary and satisfy ωi

ωj
/∈ Z for all 

i, j. Then there exists ε0 > 0 small enough such that

#T (H−1(ε)) ≥ n, ∀ 0 < ε ≤ ε0. (1.2)

This deep result was greatly improved by A. Weinstein in [26] of 1973. He was able to 
prove that for H ∈ C2(R2n, R), if H ′′(0) is positive definite, then there exists ε0 > 0
small such that (1.2) still holds. In [6], I. Ekeland and J. Lasry proved that if there exists 
x0 ∈ R2n such that

r ≤ |x− x0| ≤ R, ∀x ∈ Σ

and Rr <
√

2, then #T (Σ) ≥ n.
Note that we have the following example of weakly non-resonant ellipsoid: Let r =

(r1, . . . , rn) with ri > 0 for 1 ≤ i ≤ n. Define

En(r) =
{
z = (x1, . . . , xn, y1, . . . , yn) ∈ R2n

∣∣∣ 1
2

n∑
i=1

x2
i + y2

i

r2
i

= 1
}

where ri
rj

/∈ Q whenever i �= j. In this case, the corresponding Hamiltonian system 
is linear and all the solutions of (1.1) can be computed explicitly. Thus it is easy to 
verify that #T (En(r)) = n and all the closed characteristics on En(r) are elliptic and 
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