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1. Introduction

The present work provides a general framework, based on Topos Theory, for building
Galois-type theories in a variety of different mathematical contexts.

Most notably, we identify a set of necessary and sufficient conditions on a category
(resp. on a small category) for it to be equivalent to the category of continuous actions
(resp. of continuous non-empty transitive actions) of a topological group on discrete
sets. We also intrinsically characterize the categories which can be represented as full
subcategories of categories of non-empty transitive actions of a topological group, and
describe an elementary process for ‘completing’ them so as to make them equivalent to
such categories of actions.

We show in particular that many classical categories can be naturally embedded into
Galois-type categories; for instance, this is the case for the category of finite linear
orders and embeddings, the category of finite graphs and embeddings, the category of
finite Boolean algebras and injective homomorphisms, or the category of finite groups
and injective homomorphisms.

In order to illustrate our main results, we briefly review the classical (infinite) Galois
theory and its categorical interpretation.

Let FF C L be a Galois extension, not necessarily finite-dimensional. The group
Autp(L) of automorphisms of L which fix F' can be naturally made into a topologi-
cal group by endowing it with the so-called Krull topology, that is the topology in which
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