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We consider a class of Schrödinger equations with time-
dependent smooth magnetic and electric potentials having 
a growth at infinity at most linear and quadratic, respec-
tively. We study the convergence in Lp with loss of derivatives, 
1 < p < ∞, of the time slicing approximations of the corre-
sponding Feynman path integral. The results are completely 
sharp and hold for long time, where no smoothing effect is 
available. The techniques are based on the decomposition and 
reconstruction of functions and operators with respect to cer-
tain wave packets in phase space.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Feynman path integrals were introduced in 1948 [20,21] to provide a new formulation 
of Quantum Mechanics and nowadays represent a fundamental tool in most branches of 
modern Physics. In particular, R. Feynman suggested the construction of the integral 
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kernel K(t, s, x, y) of the Schrödinger propagator as a suggestive sum-over-histories, in 
the following sense. First of all the kernel K(t, s, x, y) itself is interpreted as the probabil-
ity amplitude for a particle to be at the point x at time t provided it was at y at time s

(x, y ∈ Rd). Now, in the computation of this quantity every path γ joining y and x, 
therefore satisfying γ(s) = y, γ(t) = x, carries a contribution which is proportional to 
ei�

−1S[γ], where S[γ] is the action along the path γ:

S[γ] =
t∫

s

L(γ(τ), γ̇(τ), τ) dτ,

L being the Lagrangian of the corresponding classical system. The total amplitude is 
finally obtained by superposition and can be written symbolically as an integral

K(t, s, x, y) =
∫

ei�
−1S[γ]D[γ]

over the space of paths satisfying the above boundary conditions. Although a suitable 
measure on this space does not exist in the measure theoretic sense (cf. [7]), several rig-
orous justifications have been proposed by many authors and from different viewpoints 
(analytic continuation of the parabolic propagator, infinite dimensional oscillatory inte-
grals, stochastic integrals, etc.). The literature is enormous and we refer to the books 
[1,49,51,52] and the references therein. Instead here we focus on the original approach 
by Feynman [20,21] via time slicing approximations, which was carried on in a rigorous 
way in the papers [22,23,26–30,32,33,38,39,43–47,58] (see also [24,25,56]). Briefly one ar-
gues as follows. Suppose that for |t − s| small enough there is only one classical path γ
(i.e. a path satisfying the Euler–Lagrange equation) satisfying the boundary condition 
γ(s) = y, γ(t) = x. Define then the action

S(t, s, x, y) =
t∫

s

L(γ(τ), γ̇(τ), τ) dτ, (1)

along that path.
Consider the operator E(0)(t, s) defined by

E(0)(t, s)f(x) = 1
(2πi(t− s)�)d/2

∫
Rd

ei�
−1S(t,s,x,y)f(y) dy. (2)

The idea is that this operator should represent a good approximation of the actual 
propagator when |t −s| is small (in fact, for the free particle E(0)(t, s) coincides with the 
exact propagator). In general one then considers a subdivision Ω : s = t0 < t1 < . . . <

tL = t of the interval [s, t] and the composition

E(0)(Ω, t, s) = E(0)(t, tL−1)E(0)(tL−1, tL−2) . . . E(0)(t1, s), (3)
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