Rigidity of self-shrinkers and translating solitons of mean curvature flows

Qun Chen ${ }^{\text {a,* }}$, Hongbing Qiu ${ }^{\text {a,b }}$
${ }^{\text {a }}$ School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
${ }^{\text {b }}$ Max Planck Institute for Mathematics in the Sciences, Inselstr. 22, D-04103 Leipzig, Germany

A R T I C L E I N F O

Article history:

Received 19 April 2015
Received in revised form 4 March 2016
Accepted 4 March 2016
Available online 16 March 2016
Communicated by Gang Tian

MSC:

53 C 44
53C40
53 C 43

Keywords:
Self-shrinker
Translating soliton
Rigidity
Omori-Yau maximum principle
V-harmonic map

A B S T R A C T

In this paper, we prove that any complete m-dimensional spacelike self-shrinkers in pseudo-Euclidean spaces \mathbb{R}_{n}^{m+n} must be affine planes, and there exists no complete m-dimensional spacelike translating soliton in \mathbb{R}_{n}^{m+n}. These results are proved by using a new Omori-Yau maximal principle. We also derive a rigidity theorem of self-shrinking hypersurfaces in Euclidean space with Gauss image lies in a regular ball.
© 2016 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

The mean curvature flow (MCF) in Euclidean space (pseudo-Euclidean space resp.) is a one-parameter family of immersions $X_{t}=X(\cdot, t): M^{m} \rightarrow \mathbb{R}^{m+n}\left(\mathbb{R}_{n}^{m+n}\right.$ resp.) with the corresponding image $M_{t}=X_{t}(M)$ such that

$$
\left\{\begin{align*}
\frac{d}{d t} X(x, t) & =H(x, t) \quad x \in M \tag{1.1}\\
X(x, 0) & =X(x)
\end{align*}\right.
$$

is satisfied, here $H(x, t)$ is the mean curvature vector of M_{t} at $X(x, t)$ in $\mathbb{R}^{m+n}\left(\mathbb{R}_{n}^{m+n}\right.$ resp.).
M^{m} is said to be a self-shrinker in \mathbb{R}^{m+n} (spacelike self-shrinker in \mathbb{R}_{n}^{m+n} resp.) if it satisfies a quasi-linear elliptic system

$$
\begin{equation*}
H=-X^{N} \tag{1.2}
\end{equation*}
$$

which is an important class of solutions to (1.1), where X^{N} is the normal part of X.
We call M^{m} a translating soliton in \mathbb{R}^{m+n} if it satisfies

$$
\begin{equation*}
H=-v^{N}, \tag{1.3}
\end{equation*}
$$

where H is the mean curvature vector of M and v is a fixed vector in \mathbb{R}^{m+n} with unit length and v^{N} denotes the orthogonal projection of v onto the normal bundle of M.

Self-similar solutions to the MCF play an important role in understanding the behavior of the flow since they often occur as singularities. The subject of self-shrinkers in Euclidean spaces are also closely related with the theory of minimal submanifolds (see e.g. $[4,16]$). There is a plenty of works on the classification and uniqueness problem for self-shrinkers and translating solitons in Euclidean spaces (see e.g. [1,22,30,28,23,16,9, $27,8,19,20,31,13]$).

On the other hand, there are many works on the rigidity problem for complete spacelike submanifolds. Calabi [7] proposed the rigidity problem for complete spacelike extremal hypersurfaces in Minkowski space \mathbb{R}_{1}^{m+1}. He proved that such hypersurfaces have to be hyperplanes when $m \leq 4$. Cheng-Yau [15] solved the problem for all m, in sharp contrast to the situation of Euclidean space. Later, Jost-Xin [24] generalized the results to higher codimensions.

In view of the above two aspects, it is then natural to study the corresponding rigidity problems for spacelike self-shrinkers. Chau-Chen-Yuan [9] and Huang-Wang [21] proved that any spacelike entire graphic Lagrangian self-shrinkers must be flat under the condition that the Hessian of the potential function is bounded below quadratically by different methods. Ding-Wang in [18] derived rigidity results for spacelike entire graphs under subexponential decay condition. Ding-Xin [19] showed that such Lagrangian selfshrinkers are flat by removing the additional condition in [9] and [21]. Some rigidity and

https://daneshyari.com/en/article/4665176

Download Persian Version:

https://daneshyari.com/article/4665176

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: qunchen@whu.edu.cn (Q. Chen), hbqiu@whu.edu.cn (H. Qiu).

