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We consider models given by Hamiltonians of the form

H(I,¢,p,q,t€)
= 1
=)+ 3% (324 Vi0) + QU pias i)

j=1

where I € T C R, o € T p,q € R*, t € T'. These
are higher dimensional analogues, both in the center and
hyperbolic directions, of the models studied in [28,29,43] and
are usually called “a-priori unstable Hamiltonian systems”. All
these models present the large gap problem.

We show that, for 0 < ¢ <« 1, under regularity and explicit
non-degeneracy conditions on the model, there are orbits
whose action variables I perform rather arbitrary excursions
in a domain of size O(1). This domain includes resonance lines
and, hence, large gaps among d-dimensional KAM tori. This
phenomenon is known as Arnold diffusion.

The method of proof follows closely the strategy of [28,29].
The main new phenomenon that appears when the dimension
d of the center directions is larger than one is the existence of
multiple resonances in the space of actions I € Z C R%. We
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show that, since these multiple resonances happen in sets of
codimension greater than one in the space of actions I, they
can be contoured. This corresponds to the mechanism called
diffusion across resonances in the Physics literature.
The present paper, however, differs substantially from [28,
29]. On the technical details of the proofs, we have taken
advantage of the theory of the scattering map developed
in [31]—mnotably the symplectic properties—which were not
available when the above papers were written. We have
analyzed the conditions imposed on the resonances in more
detail.
More precisely, we have found that there is a simple condition
on the Melnikov potential which allows us to conclude that
the resonances are crossed. In particular, this condition does
not depend on the resonances. So that the results are new
even when applied to the models in [28,29].
© 2015 Elsevier Inc. All rights reserved.
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