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We relate generalized Lebesgue decompositions of measures 
in terms of curve fragments (“Alberti representations”) and 
Weaver derivations. This correspondence leads to a geometric 
characterization of the local norm on the Weaver cotangent 
bundle of a metric measure space (X, μ): the local norm of a 
form df “sees” how fast f grows on curve fragments “seen” 
by μ. This implies a new characterization of differentiability 
spaces in terms of the μ-a.e. equality of the local norm of df
and the local Lipschitz constant of f . As a consequence, the 
“Lip–lip” inequality of Keith must be an equality. We also 
provide dimensional bounds for the module of derivations in 
terms of the Assouad dimension of X.
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1. Introduction

1.1. Overview

This paper studies the differentiability properties of real-valued Lipschitz functions 
defined on separable metric measure spaces. Two seminal works in this field are due to 
Cheeger [11] and Weaver [39].

In [11] Cheeger formulated a generalization of Rademacher’s differentiability theorem
for metric measure spaces admitting a Poincaré inequality (this is an analytic condition 
that has been introduced in [20] and has proven useful to generalize notions of calculus 
on metric measure spaces; knowing about the Poincaré inequality is not a prerequisite for 
understanding this paper); a metric measure space satisfying the conclusion of Cheeger’s 
result is often called a (Lipschitz) differentiability space or is said to have a (measur-
able/strong measurable) differentiable structure. Applications of differentiability spaces 
include the study of Sobolev and quasiconformal maps in metric measure spaces [7,24]
and the study of metric embeddings [12,11]. Recently Bate [8] approached this subject 
from a different angle by showing that differentiability spaces have a rich 1-rectifiable 
structure, which can be described in terms of Fubini-like representations of the measure 
which are called Alberti representations or 1-rectifiable representations [2].

Even though there are many examples of differentiability spaces, the notion of differ-
entiable structure is rather restrictive. For example, consider R2 with the metric:

d((x1, y1), (x2, y2)) = |x1 − x2| + |y1 − y2|1/2; (1.1)

the existence of nowhere differentiable Hölder functions (for example the classical Weier-
strass function, see [15, Exa. 11.3]) in the y-direction can be used to show that (R2, d, μ)
is never a differentiability space for any choice of μ. However, for many measures, e.g. for 
the Lebesgue measure, there is a good notion of differentiation, or vector field, in the 
x-direction.

This example can be better understood using Weaver’s approach [39] to differentia-
bility, which is motivated by the study of Lipschitz algebras. This approach is, roughly 
speaking, based on the idea of defining measurable vector fields (called derivations) as 
operators acting on Lipschitz functions. Even though Weaver’s approach is more flexible 
than Cheeger’s, there are fewer works on this topic [17,34] and, apart from specific ex-
amples, it seemed unclear whether it would be possible to obtain a geometric description 
of derivations for a general Radon measure μ on a metric space X.

The main achievement of this paper is to provide a general approach to differentiability 
that can be applied to any Radon measure defined on a complete separable metric space; 
this approach unifies Weaver’s theory with the study of Alberti representations and gives 
a geometric description of measurable vector fields and 1-forms on metric measure spaces.

Even though we build on ideas introduced in [2,8], we have to overcome significant 
obstacles, most notably the fact that we do not assume the existence of a differentiable 
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