

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Derivations and Alberti representations

Andrea Schioppa¹

NYU, 251 Mercer St., New York, NY 10012, USA

Article history: Received 25 January 2015 Received in revised form 9 February 2016 Accepted 10 February 2016 Available online 26 February 2016 Communicated by Kenneth Falconer

MSC: 53C23 46J15 58C20

Keywords: Derivation Lipschitz algebra Measurable differentiable structure

Contents

1.	Introduction	437
2.	Preliminaries	448
3.	Derivations and Alberti representations	469
4.	Structure of differentiability spaces	493
5.	Technical tools	508
Ackno	owledgments	526
Refere	ences	526

E-mail address: andrea.schioppa@math.ethz.ch.

¹ Present address: ETH, Rämistrasse 101, 8092 Zürich, Switzerland.

 $\label{eq:http://dx.doi.org/10.1016/j.aim.2016.02.013} 0001-8708/©$ 2016 Elsevier Inc. All rights reserved.

ABSTRACT

We relate generalized Lebesgue decompositions of measures in terms of curve fragments ("Alberti representations") and Weaver derivations. This correspondence leads to a geometric characterization of the local norm on the Weaver cotangent bundle of a metric measure space (X, μ) : the local norm of a form df "sees" how fast f grows on curve fragments "seen" by μ . This implies a new characterization of differentiability spaces in terms of the μ -a.e. equality of the local norm of dfand the local Lipschitz constant of f. As a consequence, the "Lip–lip" inequality of Keith must be an equality. We also provide dimensional bounds for the module of derivations in terms of the Assouad dimension of X.

© 2016 Elsevier Inc. All rights reserved.

MATHEMATICS

霐

1. Introduction

1.1. Overview

This paper studies the differentiability properties of real-valued Lipschitz functions defined on separable metric measure spaces. Two seminal works in this field are due to Cheeger [11] and Weaver [39].

In [11] Cheeger formulated a generalization of Rademacher's differentiability theorem for metric measure spaces admitting a Poincaré inequality (this is an analytic condition that has been introduced in [20] and has proven useful to generalize notions of calculus on metric measure spaces; knowing about the Poincaré inequality is *not* a prerequisite for understanding this paper); a metric measure space satisfying the *conclusion* of Cheeger's result is often called a *(Lipschitz) differentiability space* or is said to have a *(measurable/strong measurable) differentiable structure*. Applications of differentiability spaces include the study of Sobolev and quasiconformal maps in metric measure spaces [7,24] and the study of metric embeddings [12,11]. Recently Bate [8] approached this subject from a different angle by showing that differentiability spaces have a rich 1-*rectifiable structure*, which can be described in terms of Fubini-like representations of the measure which are called *Alberti representations* or 1-*rectifiable representations* [2].

Even though there are many examples of differentiability spaces, the notion of differentiable structure is rather restrictive. For example, consider \mathbb{R}^2 with the metric:

$$d((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + |y_1 - y_2|^{1/2};$$
(1.1)

the existence of nowhere differentiable Hölder functions (for example the classical Weierstrass function, see [15, Exa. 11.3]) in the *y*-direction can be used to show that (\mathbb{R}^2, d, μ) is never a differentiability space for any choice of μ . However, for many measures, e.g. for the Lebesgue measure, there is a good notion of differentiation, or vector field, in the *x*-direction.

This example can be better understood using Weaver's approach [39] to differentiability, which is motivated by the study of Lipschitz algebras. This approach is, roughly speaking, based on the idea of defining *measurable vector fields* (called *derivations*) as operators acting on Lipschitz functions. Even though Weaver's approach is more flexible than Cheeger's, there are fewer works on this topic [17,34] and, apart from specific examples, it seemed unclear whether it would be possible to obtain a geometric description of derivations for a general Radon measure μ on a metric space X.

The main achievement of this paper is to provide a general approach to differentiability that can be applied to *any* Radon measure defined on a complete separable metric space; this approach unifies Weaver's theory with the study of Alberti representations and gives a geometric description of measurable vector fields and 1-forms on metric measure spaces.

Even though we build on ideas introduced in [2,8], we have to overcome significant obstacles, most notably the fact that we *do not* assume the existence of a differentiable

Download English Version:

https://daneshyari.com/en/article/4665200

Download Persian Version:

https://daneshyari.com/article/4665200

Daneshyari.com