

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

The signature of a rough path: Uniqueness

MATHEMATICS

霐

Horatio Boedihardjo $^{\rm a,1},$ Xi Geng $^{\rm b},$ Terry Lyons $^{\rm b,*},$ Danyu Yang $^{\rm c}$

 ^a Department of Mathematics and Statistics, University of Reading, United Kingdom
^b Mathematical Institute and Oxford-Man Institute, University of Oxford, United Kingdom
^c Oxford-Man Institute, University of Oxford, United Kingdom

ARTICLE INFO

Article history: Received 3 February 2016 Accepted 8 February 2016 Available online 4 March 2016 Communicated by Charles Fefferman

Keywords: Rough paths Chen series Magnus series Controlled differential equation Reduced path group Signature

ABSTRACT

In the context of controlled differential equations, the signature is the exponential function on paths. B. Hambly and T. Lyons proved that the signature of a bounded variation path is trivial if and only if the path is tree-like. We extend Hambly–Lyons' result and their notion of tree-like paths to the setting of weakly geometric rough paths in a Banach space. At the heart of our approach is a new definition for reduced path and a lemma identifying the reduced path group with the space of signatures.

© 2016 Published by Elsevier Inc.

1. Introduction

In K.T. Chen's work [8] on the cohomology of the loop space, he defined and systematically studied the formal series of iterated integrals

^{*} Corresponding author.

E-mail address: terry.lyons@maths.ox.ac.uk (T. Lyons).

 $^{^{1}\,}$ The main part of his contribution on this paper was made while at Oxford-Man Institute, University of Oxford.

H. Boedihardjo et al. / Advances in Mathematics 293 (2016) 720-737

$$S(x) = 1 + \sum_{i_1} \int_0^T \mathrm{d}x_{t_1}^{i_1} X_{i_1} + \sum_{i_1, i_2} \int_0^T \int_0^{t_2} \mathrm{d}x_{t_1}^{i_1} \mathrm{d}x_{t_2}^{i_2} X_{i_1} \cdot X_{i_2} + \dots$$
(1.1)

where $x : [0,T] \to \mathbb{R}^d$ is a path with bounded variation and X_1, \ldots, X_d are formal non-commutative indeterminates. After proving a homomorphism property of the map S([8], see (2.1) below), he gave an argument [10] that the map S restricted to appropriate classes of paths is, up to translation and reparametrisation, injective. Hambly and Lyons [17], motivated by the application of the map S in rough path theory, posed the following problem:

How to characterise the kernel of the map S?

Hambly and Lyons [17] proved that for a bounded variation path x, S(x) = 1 if and only if x is *tree-like*. They conjectured that the result extends to weakly geometric rough paths, a fundamental class of control paths for which controlled differential equations can be defined. Their result directly implies that the space of bounded variation paths, quotiented by the space of tree-like paths, forms a group with respect to the concatenation operation. They called this quotient space the *reduced path group*.

In [18], LeJan and Qian answered a special case of Hambly–Lyons conjecture. They proved that, when restricted on the complement of a Wiener measure zero set, the map S (defined using Stratonovich integration) is injective. There has been a number of other partial results for particular cases of weakly geometric rough paths [15,4,3,2]. A key observation in the proof of Hambly–Lyons and further refined by LeJan and Qian is that the iterated integrals of 1-forms along a path is a linear functional of the signature of the path. It turns out that a subtle variant of this idea, by considering the 1-form along the iterated integrals of the path work to prove Hambly–Lyons' conjecture.

To formulate the extension of Hambly–Lyons result, we must find the correct notion of tree-like weakly geometric rough paths. Hambly–Lyons' definition of tree-like path is inappropriate in the setting of weakly geometric rough paths. In fact, it is easy to prove that if x is an injective path with finite p-variation for some p > 1 and infinite 1-variation, then $x \star \overleftarrow{x}$ is in the kernel of S but isn't tree-like in the sense of Hambly–Lyons. A tree-like path x (in the sense of Hambly–Lyons) has the property that there exists a continuous function $h: [0, 1] \to \mathbb{R}, h_t \geq 0$ for all $t \in [0, 1], h_1 = h_0$ and

$$h_s = h_t = \inf_{s \le u \le t} h_u \Longrightarrow x_s = x_t.$$

We will take an equivalent formulation of this property (see [12,16]) as the definition of tree-like path, as follows.

Definition 1.1. Let *E* be a topological space. A continuous path $x : [0,T] \to E$ is *tree-like* if there exists a \mathbb{R} -tree τ , a continuous map $\phi : [0,T] \to \tau$ and a map $\psi : \tau \to E$ such that $\phi(0) = \phi(T)$ and $x = \psi \circ \phi$.

Download English Version:

https://daneshyari.com/en/article/4665206

Download Persian Version:

https://daneshyari.com/article/4665206

Daneshyari.com