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This paper studies closed 3-manifolds which are the attractors 
of a system of finitely many affine contractions that tile R3. 
Such attractors are called self-affine tiles. Effective characteri-
zation and recognition theorems for these 3-manifolds as 
well as theoretical generalizations of these results to higher 
dimensions are established. The methods developed build 
a bridge linking geometric topology with iterated function 
systems and their attractors.
A method to model self-affine tiles by simple iterative systems 
is developed in order to study their topology. The model is 
functorial in the sense that there is an easily computable map 
that induces isomorphisms between the natural subdivisions 
of the attractor of the model and the self-affine tile. It 
has many beneficial qualities including ease of computation 
allowing one to determine topological properties of the 
attractor of the model such as connectedness and whether 
it is a manifold. The induced map between the attractor of 
the model and the self-affine tile is a quotient map and can 
be checked in certain cases to be monotone or cell-like. Deep 
theorems from geometric topology are applied to characterize 
and develop algorithms to recognize when a self-affine tile is 
a topological or generalized manifold in all dimensions. These 
new tools are used to check that several self-affine tiles in the 
literature are 3-balls. An example of a wild 3-dimensional self-
affine tile is given whose boundary is a topological 2-sphere 
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but which is not itself a 3-ball. The paper describes how any 
3-dimensional handlebody can be given the structure of a self-
affine 3-manifold. It is conjectured that every self-affine tile 
which is a manifold is a handlebody.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

A great deal of work in the literature has concentrated on tilings of Rn whose tiles 
are defined by a finite collection of contractions. One of the most prevalent examples are 
tilings by self-affine tiles where the contractions are affine translates of a single linear 
contraction. A long-standing open question is whether there exists a closed 3-manifold 
which is a nontrivial self-affine tile, a so-called self-affine 3-manifold. To settle this ques-
tion in the affirmative the current paper effectively characterizes and recognizes self-affine 
3-manifolds and gives theoretical generalizations of these results to higher dimensions. 
The methods developed in this paper build a bridge linking two previously unrelated 
areas of mathematics: geometric topology on the one side and iterated function systems 
and their attractors on the other side.

Much research is devoted to how a subset of the Euclidean space can admit a tiling 
by self-affine tiles. In the planar case, the topology of these tiles has been studied thor-
oughly. Much less is known about the topology of self-affine tiles of Euclidean 3-space. 
In particular it has been an open question as to which (if any) 3-manifolds admit a 
nontrivial self-affine tiling of R3. A number of examples have appeared in the literature 
which were conjectured to be self-affine tilings of R3 by 3-balls. In the current paper we 
address these questions by describing an often effective method of determining that a 
given 3-dimensional self-affine tile is a tamely embedded 3-manifold. The method gives 
affirmative answers for the previously conjectured examples, and is also used to give 
examples of 3-dimensional self-affine tiles which are handlebodies of higher genus. Ex-
amples are also given of self-affine tiles in R3 whose boundaries are wildly embedded 
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