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Let k be a field of characteristic p. We construct a new 
inflation functor for cohomological Mackey functors for finite 
groups over k. Using this inflation functor, we give an explicit 
presentation of the graded algebra of self-extensions of the 
simple functor SG

1 , when p is odd and G is an elementary 
abelian p-group.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let k be a field and G be a finite group. The theory of Mackey functors and cohomo-
logical Mackey functors for G over k originates in the work of Green [5] and Dress [4], 
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at the beginning of the 70s. It can be viewed as the theory of induction and restriction, 
when we forget the particular framework of linear representations of G. Many important 
developments have been achieved since, culminating in the comprehensive and seminal 
paper by Thévenaz and Webb [6] in 1995, where the authors introduced the Mackey 
algebra μk(G), and showed, among many other fundamental results, that the category of 
Mackey functors for G over k is equivalent to the category of μk(G)-modules. Similarly, 
they showed that the subcategory Mc

k(G) of cohomological Mackey functors for G over k
is equivalent to the category of coμk(G)-modules, where coμk(G) is a specific quotient 
of μk(G), called the cohomological Mackey algebra.

The algebras μk(G) and coμk(G) share many similarities with the group algebra kG: 
e.g., they are finite dimensional k-vector spaces, of dimension independent of k, the 
Maschke theorem holds, there is a good theory of decomposition from characteristic 0 
to characteristic p, etc. These resemblances raise as natural question, whether a given 
theorem on kG will admit an analogue for μk(G) or coμk(G).

This was the main motivation in [2], where the question of complexity of cohomo-
logical Mackey functors was solved (in the only non-trivial case where k is a field of 
positive characteristic p dividing the order of G). This question amounts to comput-
ing all extension groups between simple cohomological Mackey functors for G. It was 
shown in [2] that one can assume that G is a p-group, and in this case these extension 
groups can be determined from the knowledge of sufficient information on the algebra 
E = Ext∗(SE

1 , SE
1 ) of self-extensions of a particular simple functor SE

1 for some subquo-
tients E of G. Along the way, a presentation of this algebra when E is elementary abelian 
and p = 2 was given, together with a formula for the Poincaré series. In the case p > 2, 
no such presentation was given, and a conjecture was proposed for the Poincaré series 
of E . In the same article, the conjecture was proved in the case p = 3.

This paper settles completely the case p > 2: a presentation of E is given, and, as 
a corollary, the forementioned conjecture is proved. The main results are the following, 
where SH

1,W denotes the simple functor for the group H defined as in 2.15. To simplify 
notation, when W = k is the trivial module, we drop this subscript. We start by the 
construction of a new inflation functor for cohomological Mackey functors:

1.1. Theorem. Let k be a field, let G be a finite group, let N �G and let V be a simple 
k(G/N)-module. Then there exists an exact functor σG

G/N from Mc
k(G/N) to Mc

k(G)
satisfying

σG
G/N (SG/N

1,V ) = SG
1,InfGG/NV .

Suppose, moreover, that G = N �H is the semidirect product of N by a group H.

1. If V is a kH-module, let Ṽ be the kG-module InfGG/N IsoG/N
H V . Then the restriction 

of Ṽ to H is isomorphic to V .
2. The composition ResGHσG

G/N IsoG/N
H is isomorphic to the identity functor of Mc

k(H).
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