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We prove that for any Bernstein function ψ the operator 
−ψ(A) generates a bounded holomorphic C0-semigroup 
(e−tψ(A))t≥0 on a Banach space, whenever −A does. This 
answers a question posed by Kishimoto and Robinson. 
Moreover, giving a positive answer to a question by Berg, 
Boyadzhiev and de Laubenfels, we show that (e−tψ(A))t≥0
is holomorphic in the holomorphy sector of (e−tA)t≥0, 
and if (e−tA)t≥0 is sectorially bounded in this sector then 
(e−tψ(A))t≥0 has the same property. We also obtain new 
sufficient conditions on ψ in order that, for every Banach 
space X, the semigroup (e−tψ(A))t≥0 on X is holomorphic 
whenever (e−tA)t≥0 is a bounded C0-semigroup on X. These 
conditions improve and generalize well-known results by 
Carasso–Kato and Fujita.
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1. Introduction

The present paper concerns operator-theoretic and function-theoretic properties of 
Bernstein functions and solves several notable problems which have been left open for 
some time.

Bernstein functions play a prominent role in probability theory and operator theory. 
One of their characterizations, also important for our purposes, says that a function 
ψ : (0, ∞) → [0, ∞) is Bernstein if and only if there exists a vaguely continuous semigroup 
of subprobability Borel measures (μt)t≥0 on [0, ∞) such that

e−tψ(λ) =
∞∫
0

e−λs μt(ds), λ > 0, (1.1)

for all t ≥ 0.
Let now (e−tA)t≥0 be a bounded C0-semigroup on a (complex) Banach space X with 

generator −A. The relation (1.1) suggests a way to define a new bounded C0-semigroup 
(e−tB)t≥0 on X in terms of (e−tA)t≥0 and a Bernstein function ψ as

e−tB =
∞∫
0

e−sA μt(ds), (1.2)

where (μt)t≥0 is a semigroup of measures given by (1.1). Following (1.1), it is natural 
to define ψ(A) := B. As it will be revealed in Subsection 3.3 below, such a definition of 
ψ(A) goes far beyond formal notation and it respects some rules for operator functions 
called functional calculus.

The semigroup (e−tψ(A))t≥0 is subordinated to the semigroup (e−tA)t≥0 via a sub-
ordinator (μt)t≥0. The basics of subordination theory was set up by Bochner [4] and 
Phillips [27]. This approach to constructing semigroups is motivated by probabilistic ap-
plications, e.g. by the study of Lévy processes, but it has also significant value for PDEs 
as well. As a textbook example one may mention a classical result of Yosida expressing 
(e−tAα)t≥0, α ∈ (0, 1), in terms of (e−tA)t≥0 as in (1.2), see e.g. [33]. The essential feature 
of this example is that C0-semigroups (e−tAα)t≥0 turn out to be necessarily holomor-
phic. This fact stimulated further research on relations between functional calculi and 
Bernstein functions, see e.g. [31] and [32]. Some of them are described below.

An easy consequence of (1.2) is that for a fixed Bernstein function ψ the mapping

M : −A �→ −ψ(A) (1.3)

preserves the class of generators of bounded C0-semigroups, and it is natural to ask 
whether there are any other important classes of semigroup generators stable under M. 
In particular, whether M preserves the class of holomorphic C0-semigroups. The question 
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