

Contents lists available at ScienceDirect

Advances in Mathematics

Spectrality of a class of infinite convolutions

Li-Xiang An^a, Xing-Gang He^{a,*}, Ka-Sing Lau^b

^a School of Mathematics and Statistics, Central China Normal University, Wuhan, 430079, PR China

ARTICLE INFO

Article history: Received 3 October 2014 Received in revised form 21 July 2015 Accepted 27 July 2015 Available online 3 August 2015 Communicated by Kenneth Falconer

MSC:28A80 42C05

Keywords: Admissible pairs Compatible pairs Convolution of measures Moran measures Self-similar measures Spectral measures Universally admissible

ABSTRACT

For a finite set $\mathcal{D} \subset \mathbb{Z}$ and an integer $b \geq 2$, we say that (b, \mathcal{D}) is compatible with $\mathcal{C} \subset \mathbb{Z}$ if $[e^{-2\pi i dc/b}]_{d \in \mathcal{D}, c \in \mathcal{C}}$ is a Hadamard matrix. Let $\delta_E = \frac{1}{\#E} \sum_{a \in E} \delta_a$ denote the uniformly discrete probability measure on E. We prove that the class of infinite convolution (Moran measure) $\mu_{b,\{\mathcal{D}_k\}} = \delta_{b^{-1}\mathcal{D}_1} * \delta_{b^{-2}\mathcal{D}_2} * \cdots$ is a spectral measure provided that there is a common $\mathcal{C} \subset \mathbb{Z}^+$ compatible to all the (b, \mathcal{D}_k) and $\mathcal{C} + \mathcal{C} \subseteq \{0, 1, \dots, b-1\}$. We also give some examples to illustrate the hypotheses and results, in particular, the last condition on C is essential. © 2015 Elsevier Inc. All rights reserved.

Contents

Department of Mathematics, The Chinese University of Hong Kong, Hong Kong

 $^{^{\}circ}$ The research is partially supported by the RGC grant of Hong Kong and by the NNSF of China (Nos. 11271148, 11171100 and 11371382).

^{*} Corresponding author.

E-mail addresses: anlixianghai@163.com (L.-X. An), xingganghe@163.com (X.-G. He), kslau@math.cuhk.edu.hk (K.-S. Lau).

2.	Preliminaries	365
3.	Proof of Theorem 1.3 when $\mathcal{Z}_{b,\mathcal{E}} \cap \bigcup_{k=1}^{\infty} \mathcal{C}'_k = \emptyset$	368
4.	Proof of Theorem 1.3 when $\mathcal{Z}_{b,\mathcal{E}} \cap \bigcup_{k=1}^{\infty} \mathcal{C}'_k \neq \emptyset$	370
5.	Some examples	374
Ackno	wledgment	375
Refere	ences	375

1. Introduction

Let μ be a Borel probability measure on \mathbb{R}^d with compact support. We call a countable subset $\Lambda \subset \mathbb{R}^d$ a spectrum of μ if the set of complex exponentials $\mathbb{E}_{\Lambda} = \{e_{\lambda} : \lambda \in \Lambda\}$ forms an orthonormal basis for $L^2(\mu)$, where $e_{\lambda}(x) = e^{-2\pi i \langle x, \lambda \rangle}$. If $L^2(\mu)$ admits a spectrum, then μ is called a spectral measure; in this case, μ is of pure type, i.e., it is either discrete and finite, or absolutely continuous or singular continuous with respect to the Lebesgue measure [14]. In particular, if μ is the normalized Lebesgue measure supported on a Borel set Ω , then Ω is called a spectral set. The interest of the spectral set was first raised by Fuglede [13] in 1974, who conjectured that Ω is a spectral set if and only if it is a translational tile.

Fuglede's conjecture was disproved in 2004 by Tao [30] who showed that a spectral set is not necessary a tile for \mathbb{R}^d , $d \geq 5$. Tao's work was subsequently improved by Kolountzakis and Matolcsi [17,18] who proved that the conjecture is false in both directions for $d \geq 3$. Nevertheless, there are positive results with additional conditions on the underlying sets, and the conjecture is still valid for \mathbb{R}^d , $d \leq 2$. In another direction, Jorgensen and Pedersen [16] made a head start to study the spectral property of the self-similar measures. Nowadays, there is a large literature on this topic [1–7,9,12–16,19–21,23–26, 28–30]. Among those, one of the best known results is that if $\rho = 1/q$ for some integer q > 1, then $\mu_{\rho,\{0,1\}}$ is a spectral measure if and only if q is an even integer [16]. In [2], Dai characterized that these $\mu_{1/q,\{0,1\}}$ are the only spectral measures among the Bernoulli convolutions.

Until now, there are only a few classes of singular spectral measures that are known. In this paper, we will consider a new class of singular spectral measures defined by some simple conditions. More specifically, we will study the *Moran measures*, which is a non-self-similar extension of the Cantor measure (as well as the Bernoulli convolution) through the infinite convolution. For any finite set, denote $\delta_E = \frac{1}{\#E} \sum_{a \in E} \delta_a$, where #E is the cardinality of the set E and δ_a is the Dirac point mass measure at a. Let $\{b_k\}_{k=1}^{\infty}$ be a sequence of integers > 1, and let $\{\mathcal{D}_k\}_{k=1}^{\infty}$ be a sequence of finite digit sets in \mathbb{Z} . If $\sup_{k\geq 1} |\mathcal{D}_k| := \sup\{ |d| : d \in \mathcal{D}_k, k \geq 1 \} < \infty$, then associated to these two sequences, there exists a Borel probability measure with compact support defined by the convolution

$$\mu_{\{b_k\},\{\mathcal{D}_k\}} = \delta_{b_1^{-1}\mathcal{D}_1} * \delta_{(b_1b_2)^{-1}\mathcal{D}_2} * \cdots$$

Download English Version:

https://daneshyari.com/en/article/4665264

Download Persian Version:

https://daneshyari.com/article/4665264

<u>Daneshyari.com</u>