Advances in Mathematics 280 (2015) 225–255 $\,$

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Norms of inner derivations for multiplier algebras of C^* -algebras and group C^* -algebras, II $\stackrel{\Leftrightarrow}{\approx}$

MATHEMATICS

2

Robert J. Archbold^{a,*}, Eberhard Kaniuth^b, Douglas W.B. Somerset^a

 ^a Institute of Mathematics, University of Aberdeen, King's College, Aberdeen AB24 3UE, UK
^b Institute of Mathematics, University of Paderborn, 33095 Paderborn, Germany

A R T I C L E I N F O

Article history: Received 1 March 2012 Received in revised form 23 March 2015 Accepted 14 April 2015 Available online 15 May 2015 Communicated by Dan Voiculescu

MSC: primary 46L05, 46L57 secondary 22C05, 22D15, 22D25, 54H15

Keywords: C^* -algebra Multiplier algebra Derivation Motion group Unitary dual Graph structure

ABSTRACT

The derivation constant $K(A) \geq \frac{1}{2}$ has been extensively studied for *unital* non-commutative C^* -algebras. In this paper, we investigate properties of K(M(A)) where M(A) is the multiplier algebra of a non-unital C^* -algebra A. A number of general results are obtained which are then applied to the group C^* -algebras $A = C^*(G_N)$ where G_N is the motion group $\mathbb{R}^N \rtimes SO(N)$. Utilizing the rich topological structure of the unitary dual $\widehat{G_N}$, it is shown that, for $N \geq 3$,

$$K(M(C^*(G_N))) = \frac{1}{2} \left\lceil \frac{N}{2} \right\rceil.$$

© 2015 Elsevier Inc. All rights reserved.

E-mail addresses: r.archbold@abdn.ac.uk (R.J. Archbold), kaniuth@math.uni-paderborn.de (E. Kaniuth), somerset@quidinish.fsnet.co.uk (D.W.B. Somerset).

 $\label{eq:http://dx.doi.org/10.1016/j.aim.2015.04.019} 0001-8708 \ensuremath{\oslash} \ensuremath{\bigcirc} \ensuremath{\ensuremath{}} \ensuremath{)} \ensuremath{\bigcirc} \ensuremath{)} \e$

 $^{^{*}}$ The authors are grateful to the London Mathematical Society for grant number 4919, which partially supported a research visit by E. Kaniuth to the University of Aberdeen, and they are also grateful to the referee for a number of helpful comments.

^{*} Corresponding author. Fax: +44 1224 272607.

1. Introduction

For a C^* -algebra A, an elementary application of the triangle inequality shows that

$$||D(a,A)|| \le 2d(a,Z(A))$$

for all $a \in A$, where D(a, A) is the inner derivation generated by a and d(a, Z(A)) is the distance from a to Z(A), the centre of A. This leads naturally to the definition of K(A) as the smallest number in $[0, \infty]$ such that

$$K(A) \| D(a, A) \| \ge d(a, Z(A))$$

for all $a \in A$ [3,28]. If the elements a are restricted to be self-adjoint then the corresponding constant is denoted by $K_s(A)$. If A = B(H) (or, more generally, a non-commutative von Neumann algebra on a Hilbert space $H \neq \mathbb{C}$) then $K(A) = \frac{1}{2}$ [37,38]. For unital non-commutative C^* -algebras, $K_s(A) = \frac{1}{2} \operatorname{Orc}(A)$ [35], where the *connecting order* $\operatorname{Orc}(A) \in \mathbb{N} \cup \{\infty\}$ is determined by a graph structure in the primitive ideal space $\operatorname{Prim}(A)$ (see Section 2), and for the constant K(A) it has been shown that the only possible positive values less than or equal to $\frac{1}{2} + \frac{1}{\sqrt{3}}$ are

$$\frac{1}{2}, \quad \frac{1}{\sqrt{3}}, \quad 1, \quad \frac{3+8\sqrt{2}}{14}, \quad \frac{4}{\sqrt{15}}, \quad \frac{1}{2}+\frac{1}{\sqrt{3}}$$

[36,10,11]. These results use the fine structure of the topology on Prim(A) together with spectral constructions and the constrained optimization of the bounding radii of planar sets.

If A is a non-unital C^* -algebra then, as discussed in [7], the multiplier algebra M(A) is the natural unitization to consider in the context of inner derivations. For example, it is well-known that if A is a primitive C^* -algebra then so is M(A) (cf. [7, Example 5.5]) and so $K(M(A)) = \frac{1}{2}$ [37, Theorem 5]. In particular, $K(M(A)) = \frac{1}{2}$ for every simple C^* -algebra A.

In general, in order to apply to M(A) the results for unital algebras, there is a prima facie requirement for more detailed information on $\operatorname{Prim}(M(A))$. However, this space is usually much larger and more complicated than the dense open subset $\operatorname{Prim}(A)$. This is illustrated by the complexity of the Stone–Čech compactification $\beta\mathbb{N}$ of the natural numbers \mathbb{N} and also by the results in [13], which apply to the motion group C^* -algebras considered in this paper (see the remarks after Theorem 3.3). However, when A is σ -unital, the normality of the complete regularization of $\operatorname{Prim}(A)$ enables ideal structure in M(A) to be linked to ideal structure in A without having full knowledge of $\operatorname{Prim}(M(A))$ (Proposition 2.1). It follows from this that, in several cases of interest, the value of K(M(A)) is determined by the ideal structure in A itself and hence by the topological properties of the T_0 -space $\operatorname{Prim}(A)$ [20, 3.1]. This allows the possibility of computing K(M(A)) for $A = C^*(G)$ in cases where G is a locally compact group whose Download English Version:

https://daneshyari.com/en/article/4665282

Download Persian Version:

https://daneshyari.com/article/4665282

Daneshyari.com