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1. Introduction

For N > m and an N x m real-valued matrix B, its singular values s1(B), s2(B), ...,
sm(B) are the eigenvalues of the matrix v BT B arranged in non-increasing order, where
multiplicities are counted. In particular, the largest and the smallest singular values are
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given by

s1(B)= sup [IBy|=Bl; sm(B)= inf [Byll.

yGS”“l

In this paper, we establish convergence of the smallest singular values of a sequence
random matrices with i.i.d. entries under minimal moment assumptions.

The extreme singular values of random matrices attract considerable attention of
researchers both in limiting and non-limiting settings. We refer the reader to surveys
and monographs [2,11,16,21] for extensive information on the spectral theory of random
matrices. Here, we shall focus on the following specific question: for matrices with i.i.d.
entries, what are the weakest possible assumptions on the entries which are sufficient for
the smallest singular value to “concentrate”?

We note that a corresponding problem for the largest singular value (i.e. the operator
norm) was essentially resolved in the i.i.d. case, where finiteness of the fourth moment
of the entries turns out to be crucial both in limiting and non-limiting settings. We refer
the reader to [24] and [3] for results on a.s. convergence of the largest singular value, and
[7] for the non-limiting case (see also [17,9] for some negative results on concentration of
the operator norm).

For the smallest singular value, its concentration properties are relatively well under-
stood in the i.i.d. case provided that the fourth moment of the matrix entries is bounded.
A classical theorem of Bai and Yin [4] (see also [2, Theorem 5.11]) states the following:
given an array {a;;} (1 < ¢,j < oo) of ii.d. random variables such that Ea;; = 0,
Ea;;? = 1 and Ea;;* < 0o, and an integer sequence (N,,,)2°_; with m/N,, — z for some
z € (0,1), the N,,, x m matrices A, = (a;;) (1 <i < Ny, 1 <j < m) satisfy

Nm_l/QSm(Am) — 1 —+/z almost surely.

Further, it is proved in [13,14] that for square m x m matrices with i.i.d. centered entries

—1/2 with a large

with unit variance and a bounded fourth moment, one has s,,(A) = m
probability.

A natural question in connection with the mentioned results is whether the assump-
tion on the fourth moment is necessary for the least singular value to “concentrate”;
in particular, whether any assumptions on moments of a;;’s higher than the 2-nd are
required for the a.s. convergence in the Bai—Yin theorem. This question is discussed in
[2] on p. 6. Solving the problem was a motivation for our work.

A considerable progress has been made recently in the direction of weakening the
moment assumptions on matrix entries. For square matrices, given a sufficiently large m
and an m X m matrix with i.i.d. entries with zero mean and unit variance, its smallest sin-
gular value is bounded from below by a constant (negative) power of m with probability
close to one [19, Theorem 2.1] (see also [5, Theorem 4.1] for sparse matrices).

For tall rectangular matrices, Srivastava and Vershynin proved in [18] that for any
e,m > 0 and an N x m random matrix A with independent isotropic rows X; such
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