

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Markus Kunze^{a,*}, Luca Lorenzi^b, Abdelaziz Rhandi^c

- ^a Graduiertenkolleg 1100, University of Ulm, 89069 Ulm, Germany
- b Dipartimento di Matematica e Informatica, Università degli Studi di Parma,

Parco Area delle Scienze 53/A, 43124 Parma, Italy

ARTICLE INFO

Article history: Received 24 September 2013 Received in revised form 9 July 2015 Accepted 18 September 2015 Communicated by Charles Fefferman

MSC: 35K10 35K08 37L40

Keywords: Nonautonomous elliptic operators Unbounded coefficients Kernel estimates Evolution systems of measures

ABSTRACT

Using time dependent Lyapunov functions, we prove pointwise upper bounds for the heat kernels of some nonautonomous Kolmogorov operators with possibly unbounded drift and diffusion coefficients.

© 2015 Elsevier Inc. All rights reserved.

^c Dipartimento di Ingegneria dell'Informazione, Ingegneria Elettrica e Matematica Applicata, Università degli Studi di Salerno, Via Ponte Don Melillo 1, 84084 Fisciano (Sa), Italy

 $^{^{\,\}pm}$ MK and AR were supported by the DAAD-MIUR grant, Project Vigoni – ID 54710868; LL and AR were supported by the MIUR research project PRIN 2010MXMAJR.

^{*} Corresponding author.

E-mail addresses: markus.kunze@uni-ulm.de (M. Kunze), luca.lorenzi@unipr.it (L. Lorenzi), arhandi@unisa.it (A. Rhandi).

1. Introduction

We establish kernel estimates for transition probabilities associated with nonautonomous evolution equations

$$\begin{cases}
\partial_t u(t,x) = \mathscr{A}(t)u(t,x), & (t,x) \in (s,1] \times \mathbb{R}^d, \\
u(s,x) = f(x), & x \in \mathbb{R}^d,
\end{cases}$$
(1.1)

where the operators $\mathcal{A}(t)$ are defined on smooth functions φ by

$$(\mathscr{A}(t)\varphi)(x) = \sum_{i,j=1}^{d} q_{ij}(t,x)D_{ij}\varphi(x) + \sum_{i=1}^{d} F_i(t,x)D_i\varphi(x),$$

and $s \in [0, 1)$. Parabolic equations like (1.1) appear naturally in connection with stochastic differential equations (cf. [26]), where it is natural to allow the coefficients to depend on time. Also in the study of Navier–Stokes flow past a rotating obstacle with Oseen condition, a suitable change of coordinates leads to a special class of nonautonomous Kolmogorov equations (cf. [12] and the references therein).

Throughout, we make the following assumptions on the coefficients.

Hypothesis 1.1. The coefficients q_{ij} , F_j (i, j = 1, ..., d) are defined on $[0, 1] \times \mathbb{R}^d$ and

- (1) there exists an $\varsigma \in (0,1)$ such that $q_{ij}, F_j \in C^{\frac{\varsigma}{2},\varsigma}_{loc}([0,1] \times \mathbb{R}^d)$ for all $i, j = 1, \ldots, d$. Moreover, $q_{ij} \in C^{0,1}((0,1) \times \mathbb{R}^d)$;
- (2) the matrix $Q = (q_{ij})$ is symmetric and uniformly elliptic in the sense that there exists a number $\eta > 0$ such that

$$\sum_{i,j=1}^{d} q_{ij}(t,x)\xi_i\xi_j \ge \eta |\xi|^2 \quad \text{for all } \xi \in \mathbb{R}^d, \ (t,x) \in [0,1] \times \mathbb{R}^d;$$

(3) there exist a nonnegative function $V \in C^2(\mathbb{R}^d)$ and a constant $M \geq 0$ such that $\lim_{|x| \to \infty} V(x) = \infty$ and we have $\mathscr{A}(t)V(x) \leq M$, as well as $\eta \Delta V(x) + F(t,x) \cdot \nabla V(x) \leq M$, for all $(t,x) \in [0,1] \times \mathbb{R}^d$.

Note that neither q_{ij} nor F_j (i, j = 1, ..., d) are assumed to be bounded in \mathbb{R}^d .

Under Hypothesis 1.1, it was proved in [15] that equation (1.1) is well posed in the sense that, for every $f \in C_b(\mathbb{R}^d)$, there exists a unique function $u \in C_b([s,1] \times \mathbb{R}^d) \cap C^{1,2}((s,1] \times \mathbb{R}^d)$ such that (1.1) is satisfied. Moreover, there exists an evolution family $(G(t,s))_{t,s\in D} \subset \mathcal{L}(C_b(\mathbb{R}^d))$, where $D:=\{(t,s)\in [0,1]^2:t\geq s\}$, such that the unique solution u to (1.1) is given by $u=G(\cdot,s)f$. It turns out that each operator G(t,s) is a contraction. We recall that an evolution family is a family $(G(t,s))_{(t,s)\in D}$ such that $G(t,t)=id_{C_b(\mathbb{R}^d)}$ and, for $r,s,t\in [0,1]$ with $r\leq s\leq t$, the evolution $law\ G(t,s)G(s,r)=$

Download English Version:

https://daneshyari.com/en/article/4665326

Download Persian Version:

https://daneshyari.com/article/4665326

Daneshyari.com