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1. Introduction

We establish kernel estimates for transition probabilities associated with nonau-
tonomous evolution equations

{
∂tu(t, x) = A (t)u(t, x), (t, x) ∈ (s, 1] × R

d,

u(s, x) = f(x), x ∈ R
d ,

(1.1)

where the operators A (t) are defined on smooth functions ϕ by

(A (t)ϕ)(x) =
d∑

ij=1
qij(t, x)Dijϕ(x) +

d∑
i=1

Fi(t, x)Diϕ(x) ,

and s ∈ [0, 1). Parabolic equations like (1.1) appear naturally in connection with stochas-
tic differential equations (cf. [26]), where it is natural to allow the coefficients to depend 
on time. Also in the study of Navier–Stokes flow past a rotating obstacle with Oseen 
condition, a suitable change of coordinates leads to a special class of nonautonomous 
Kolmogorov equations (cf. [12] and the references therein).

Throughout, we make the following assumptions on the coefficients.

Hypothesis 1.1. The coefficients qij , Fj (i, j = 1, . . . , d) are defined on [0, 1] × R
d and

(1) there exists an ς ∈ (0, 1) such that qij , Fj ∈ C
ς
2 ,ς

loc ([0, 1] × R
d) for all i, j = 1, . . . , d. 

Moreover, qij ∈ C0,1((0, 1) × R
d);

(2) the matrix Q = (qij) is symmetric and uniformly elliptic in the sense that there 
exists a number η > 0 such that

d∑
i,j=1

qij(t, x)ξiξj ≥ η|ξ|2 for all ξ ∈ R
d, (t, x) ∈ [0, 1] × R

d;

(3) there exist a nonnegative function V ∈ C2(Rd) and a constant M ≥ 0 such that 
lim|x|→∞ V (x) = ∞ and we have A (t)V (x) ≤ M , as well as ηΔV (x) + F (t, x) ·
∇V (x) ≤ M , for all (t, x) ∈ [0, 1] × R

d.

Note that neither qij nor Fj (i, j = 1, . . . , d) are assumed to be bounded in Rd.
Under Hypothesis 1.1, it was proved in [15] that equation (1.1) is well posed in the 

sense that, for every f ∈ Cb(Rd), there exists a unique function u ∈ Cb([s, 1] × R
d) ∩

C1,2((s, 1] × R
d) such that (1.1) is satisfied. Moreover, there exists an evolution family 

(G(t, s))t,s∈D ⊂ L (Cb(Rd)), where D := {(t, s) ∈ [0, 1]2 : t ≥ s}, such that the unique 
solution u to (1.1) is given by u = G(·, s)f . It turns out that each operator G(t, s) is 
a contraction. We recall that an evolution family is a family (G(t, s))(t,s)∈D such that 
G(t, t) = idCb(Rd) and, for r, s, t ∈ [0, 1] with r ≤ s ≤ t, the evolution law G(t, s)G(s, r) =
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