Approximation and convergence of the intrinsic volume ${ }^{\text {Tx }}$

Herbert Edelsbrunner, Florian Pausinger *
IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria

A R T I C L E I N F O

Article history:

Received 28 October 2014
Received in revised form 29 July
2015
Accepted 5 October 2015
Communicated by Ezra Miller

MSC:

65D18
53C65
28A75
55N99
53A05

Keywords:
Persistent homology
Intrinsic volume
Crofton formula
Digital image processing
Distorted normals

Abstract

We introduce a modification of the classic notion of intrinsic volume using persistence moments of height functions. Evaluating the modified first intrinsic volume on digital approximations of a compact body with smoothly embedded boundary in \mathbb{R}^{n}, we prove convergence to the first intrinsic volume of the body as the resolution of the approximation improves. We have weaker results for the other modified intrinsic volumes, proving they converge to the corresponding intrinsic volumes of the n-dimensional unit ball.

© 2015 Elsevier Inc. All rights reserved.

[^0]
Contents

1. Introduction 675
2. Background 678
3. Modified intrinsic volume 681
4. Convergence for balls 684
5. Distorted normals of the sphere 685
6. Distorted normals of a solid body 691
7. Convergence for solid bodies 697
8. Discussion 701
Acknowledgments 702
References 702

1. Introduction

Let \mathbb{M} be a compact body in \mathbb{R}^{3} whose boundary, $\partial \mathbb{M}$, is a smoothly embedded 2 -manifold, and let t be a possibly small but positive real parameter. Letting $\#\left(\mathbb{M} \cap t \mathbb{Z}^{3}\right)$ be the number of points of the dilated integer grid in \mathbb{M}, it is well known that $t^{3} \#\left(\mathbb{M} \cap t \mathbb{Z}^{3}\right)$ converges to $\operatorname{Vol}(\mathbb{M})$ as t goes to zero. The central question of the classic lattice point theory, as founded by E. Landau and others in the first decades of the 20th century, is to estimate the lattice discrepancy, which is defined as $t^{3} \#\left(\mathbb{M} \cap t \mathbb{Z}^{3}\right)-\operatorname{Vol}(\mathbb{M})$; see the recent survey [19] for more details. Since the lattice discrepancy vanishes as t goes to zero, we may approximate \mathbb{M} with $\#\left(\mathbb{M} \cap t \mathbb{Z}^{3}\right)$ cubes of edge length t whose centers are in $\mathbb{M} \cap t \mathbb{Z}^{3}$, such that the volume is preserved asymptotically, as t goes to zero. It would be nice to also preserve the other intrinsic volumes of \mathbb{M}, namely the surface area, the total mean curvature, and the total Gaussian curvature, by means of the above approximation with cubes. However, a straightforward construction only yields the right volume and Gaussian curvature, while the surface area and the mean curvature of the approximation can significantly differ from the values of \mathbb{M} as the following example shows.

Motivating example. Let $\mathbb{M}=\mathbb{B}^{3}$ be the unit ball in \mathbb{R}^{3}. The resolution t digital approximation of \mathbb{B}^{3}, denoted as \mathbb{B}_{t}^{3}, is the union of axes-aligned cubes of edge length t whose centers are of the form $(t x, t y, t z)$, with $(x, y, z) \in \mathbb{Z}^{3}$ and $t \sqrt{x^{2}+y^{2}+z^{2}} \leq 1$. There are $\#\left(\mathbb{B}^{3} \cap t \mathbb{Z}^{3}\right)=\operatorname{Vol}\left(\mathbb{B}^{3}\right) / t^{3}+o\left(1 / t^{3}\right)$ such cubes, each with volume t^{3}. Hence,

$$
\begin{equation*}
\lim _{t \rightarrow 0} \operatorname{Vol}\left(\mathbb{B}_{t}^{3}\right)=\lim _{t \rightarrow 0} t^{3} \#\left(\mathbb{B}^{3} \cap t \mathbb{Z}^{3}\right)=\operatorname{Vol}\left(\mathbb{B}^{3}\right) \tag{1}
\end{equation*}
$$

As for the surface area, we note that if we look from either end of each of the three coordinate axes, we see every square face in the boundary of \mathbb{B}_{t}^{3} exactly once. From each of the six directions, we see $\#\left(\mathbb{B}^{2} \cap t \mathbb{Z}^{2}\right)$ faces, each of area t^{2}. As t goes to zero, the total area of these faces converges to the area of the unit disk, which implies

$$
\begin{equation*}
\lim _{t \rightarrow 0} \operatorname{Area}\left(\mathbb{B}_{t}^{3}\right)=6 \lim _{t \rightarrow 0} t^{2} \#\left(\mathbb{B}^{2} \cap t \mathbb{Z}^{2}\right)=6 \operatorname{Area}\left(\mathbb{B}^{2}\right) \tag{2}
\end{equation*}
$$

https://daneshyari.com/en/article/4665328

Download Persian Version:
https://daneshyari.com/article/4665328

Daneshyari.com

[^0]: th This research is partially supported by the Toposys project FP7-ICT-318493-STREP, and by ESF under the ACAT Research Network Programme.

 * Corresponding author.

 E-mail address: florian.pausinger@gmx.at (F. Pausinger).

