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We introduce a modification of the classic notion of intrin-
sic volume using persistence moments of height functions. 
Evaluating the modified first intrinsic volume on digital ap-
proximations of a compact body with smoothly embedded 
boundary in Rn, we prove convergence to the first intrinsic 
volume of the body as the resolution of the approximation 
improves. We have weaker results for the other modified in-
trinsic volumes, proving they converge to the corresponding 
intrinsic volumes of the n-dimensional unit ball.
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1. Introduction

Let M be a compact body in R3 whose boundary, ∂M, is a smoothly embedded 
2-manifold, and let t be a possibly small but positive real parameter. Letting #(M ∩ tZ3)
be the number of points of the dilated integer grid in M, it is well known that t3#(M ∩tZ3)
converges to Vol(M) as t goes to zero. The central question of the classic lattice point 
theory, as founded by E. Landau and others in the first decades of the 20th century, is 
to estimate the lattice discrepancy, which is defined as t3#(M ∩ tZ3) − Vol(M); see the 
recent survey [19] for more details. Since the lattice discrepancy vanishes as t goes to 
zero, we may approximate M with #(M ∩tZ3) cubes of edge length t whose centers are in 
M ∩ tZ3, such that the volume is preserved asymptotically, as t goes to zero. It would be 
nice to also preserve the other intrinsic volumes of M, namely the surface area, the total 
mean curvature, and the total Gaussian curvature, by means of the above approximation 
with cubes. However, a straightforward construction only yields the right volume and 
Gaussian curvature, while the surface area and the mean curvature of the approximation 
can significantly differ from the values of M as the following example shows.

Motivating example. Let M = B3 be the unit ball in R3. The resolution t digital approx-
imation of B3, denoted as B3

t , is the union of axes-aligned cubes of edge length t whose 
centers are of the form (tx, ty, tz), with (x, y, z) ∈ Z3 and t

√
x2 + y2 + z2 ≤ 1. There 

are #(B3 ∩ tZ3) = Vol(B3)/t3 + o(1/t3) such cubes, each with volume t3. Hence,

lim
t→0

Vol(B3
t ) = lim

t→0
t3#(B3 ∩ tZ3) = Vol(B3). (1)

As for the surface area, we note that if we look from either end of each of the three 
coordinate axes, we see every square face in the boundary of B3

t exactly once. From each 
of the six directions, we see #(B2 ∩ tZ2) faces, each of area t2. As t goes to zero, the 
total area of these faces converges to the area of the unit disk, which implies

lim
t→0

Area(B3
t ) = 6 lim

t→0
t2#(B2 ∩ tZ2) = 6Area(B2), (2)
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