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This paper gives an explicit formula for the multiplier ideals, 
and consequently for the log canonical thresholds, of any 
GL(V ) ×GL(W )-invariant ideal in S = Sym(V ⊗W ∗), where 
V and W are vector spaces over a field of characteristic 0. This 
characterization is done in terms of a polytope constructed 
from the set of Young diagrams corresponding to the Schur 
modules generating the ideal.
Our approach consists in computing the test ideals of some 
invariant ideals of S in positive characteristic: Namely, we 
compute the test ideals (and so the F -pure thresholds) of any 
sum of products of determinantal ideals. Not all the invariant 
ideals are as the latter (not even in characteristic 0), but they 
are up to integral closure, and this is enough to reach our 
goals.
The results concerning the test ideals are obtained as a 
consequence of general results holding true in a special 
situation. Within such framework fall determinantal objects 
of a generic matrix, as well as of a symmetric matrix and 
of a skew-symmetric one. Similar results are thus deduced 
for the GL(V )-invariant ideals in Sym(Sym2V ) and in 
Sym(
∧2 V ). (Monomial ideals also fall in this framework, 

thus we recover Howald’s formula for their multiplier ideals 
and, more generally, Hara–Yoshida’s formula for their test 
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ideals.) In the proof, we introduce the notion of “floating 
test ideals”, a property that in a sense is satisfied by ideals 
defining schemes with the nicest possible singularities. As will 
be shown, products of determinantal ideals, and by passing 
to characteristic 0 ideals generated by a single Schur module, 
have this property.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Given an ideal I ⊆ K[x1, . . . , xN ], where K is a field of characteristic 0, its multiplier 
ideals J (λ • I) (where λ ∈ R>0) are defined by meaning of a log-resolution. The log 
canonical threshold of I is the least λ such that J (λ • I) � K[x1, . . . , xN ]. In the words 
of Lazarsfeld [19], “the intuition is that these ideals will measure the singularities of 
functions f ∈ I, with ‘nastier’ singularities being reflected in ‘deeper’ multiplier ideals”. 
In this paper, we give explicit formulas for the multiplier ideals (and therefore for the 
log canonical thresholds) of all the G-invariant ideals in a polynomial ring S, over a field 
of K characteristic 0, satisfying any of the following:

(i) S = Sym(V ⊗W ∗), where V and W are finite K-vector spaces, G = GL(V ) ×GL(W )
and the action extends the diagonal one on V ⊗W ∗ (Theorem 4.7).

(ii) S = Sym(Sym2V ), where V is a finite K-vector spaces, G = GL(V ) and the action 
extends the natural one on Sym2V (Theorem 4.8).

(iii) S = Sym(
∧2

V ), where V is a finite K-vector spaces, G = GL(V ) and the action 
extends the natural one on 

∧2
V (Theorem 4.9).

The above results are obtained via reduction to characteristic p > 0: If I ⊆
K[x1, . . . , xN ], where K is a field of characteristic p, its (generalized) test ideals τ(λ • I)
(where λ ∈ R>0) are defined using notions from tight closure theory involving the Frobe-
nius endomorphism. The connection between multiplier and test ideals is given by Hara 
and Yoshida [11], in a sense explaining why statements originally proved by using the 
theory of multiplier ideals often admit a proof also via the Hochster–Huneke theory of 
tight closure [14]: Roughly speaking, if p � 0, test ideals “coincide” with (the reduction 
mod p of) multiplier ideals. We give a general result for computing all test ideals of 
classes of ideals I satisfying certain conditions in a polynomial ring S over a field of 
characteristic p > 0 (Theorem 4.3). To give an idea, such conditions, quite combina-
torial in nature, involve the existence of a polytope controlling the integral closure of 
the powers of I, and the existence of a pair consisting of a polynomial of S and a term 
ordering on S. This pair bares properties that depend on the coordinates of the real 
vector space in which the polytope lives (which correspond to suitable p ∈ Spec(S)) and 
their weights (which are ht(p)) (see 4.1 for the precise definition). One can show that 
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