Advances in Mathematics 281 (2015) 857-885

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Self-similar subsets of the Cantor set

MATHEMATICS

2

De-Jun Feng $^{\mathrm{a},*},$ Hui Rao $^{\mathrm{b}},$ Yang Wang $^{\mathrm{c},\mathrm{d}}$

 ^a Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong
^b Department of Mathematics and Statistics, Central China Normal University, Wuhan 430070, Hubei, Peoples's Republic of China

^c Department of Mathematics, The Hong Kong University of Science and

Technology, Clear Water Bay, Kowloon, Hong Kong

^d Department of Mathematics, Michigan State University, East Lansing,

MI 48824, United States

A R T I C L E I N F O

Article history: Received 26 June 2014 Received in revised form 26 May 2015 Accepted 2 June 2015 Available online 15 June 2015 Communicated by Kenneth Falconer

MSC: 28A78 28A80 11K16

Keywords: Middle-third Cantor set Self-similar subsets Ternary expansions Set of uniqueness

ABSTRACT

In this paper, we study the following question raised by Mattila in 1998: what are the self-similar subsets of the middle-third Cantor set C? We give criteria for a complete classification of all such subsets. We show that for any self-similar subset \mathbf{F} of C containing more than one point, every linear generating IFS of \mathbf{F} must consist of similitudes with contraction ratios $\pm 3^{-n}$, $n \in \mathbb{N}$. In particular, a simple criterion is formulated to characterize self-similar subsets of C with equal contraction ratio in modulus.

© 2015 Elsevier Inc. All rights reserved.

* Corresponding author.

E-mail addresses: djfeng@math.cuhk.edu.hk (D.-J. Feng), hrao@mail.ccnu.edu.cn (H. Rao), yangwang@ust.hk (Y. Wang).

 $\label{eq:http://dx.doi.org/10.1016/j.aim.2015.06.002} 0001-8708/© 2015$ Elsevier Inc. All rights reserved.

1. Introduction

Let C denote the standard middle-third Cantor set. The main goal of this paper is to answer the following open question raised by Mattila [2] in 1998: what are the self-similar subsets of C?

Recall that a non-empty compact set $\mathbf{F} \subset \mathbb{R}$ is said to be *self-similar* if there exists a finite family $\Phi = \{\phi_i\}_{i=1}^k$ of contracting similarity maps on \mathbb{R} such that

$$\mathbf{F} = \bigcup_{i=1}^{k} \phi_i(\mathbf{F}). \tag{1.1}$$

Such Φ is called a linear *iterated function system* (IFS) on \mathbb{R} . As proved by Hutchinson [5], for a given IFS Φ , there is a unique non-empty compact set \mathbf{F} satisfying (1.1). To specify the relation between Φ and \mathbf{F} , we call Φ a *linear generating IFS* of \mathbf{F} , and \mathbf{F} the *attractor* of Φ . Throughout this paper, we use \mathbf{F}_{Φ} to denote the attractor of a given linear IFS Φ . A self-similar set $\mathbf{F} = \mathbf{F}_{\Phi}$ is said to be *non-trivial* if it is not a singleton.

The middle-third Cantor set C is one of the most well known examples of self-similar sets. It has a generating IFS $\{x/3, (x+2)/3\}$.

The first result of this paper is the following theorem, which is our starting point for further investigations.

Theorem 1.1. Assume that $\mathbf{F} \subseteq \mathbf{C}$ is a non-trivial self-similar set, generated by a linear IFS $\Phi = \{\phi_i\}_{i=1}^k$ on \mathbb{R} . Then for each $1 \leq i \leq k$, ϕ_i has contraction ratio $\pm 3^{-m_i}$, where $m_i \in \mathbb{N}$.

The proof of the above theorem is based on a short geometric argument and a fundamental result of Salem and Zygmund on the sets of uniqueness in harmonic analysis.

It is easy to see that if a self-similar set \mathbf{F} has a generating IFS $\Phi = \{\phi_i\}_{i=1}^k$ that is derived from the IFS $\Psi := \{x/3, (x+2)/3\}$, i.e., each map in Φ is a finite composition of maps in Ψ , then $\mathbf{F} \subseteq \mathbf{C}$. In light of Theorem 1.1, one may guess that each nontrivial self-similar subset of \mathbf{C} has a linear generating IFS derived from Ψ . However, this is not true. The following counter example was constructed in [4].

Example 1.2. Let $\Phi = \{\frac{1}{9}x, \frac{1}{9}(x+2)\}$. Choose a sequence $(\epsilon_n)_{n=1}^{\infty}$ with $\epsilon_n \in \{0, 2\}$ so that $w = \sum_{n=1}^{\infty} \epsilon_n 3^{-2n+1}$ is an irrational number. Then by looking at the ternary expansion of the elements in $\mathbf{F}_{\Phi} + w := \{x + w : x \in \mathbf{F}_{\Phi}\}$, it is easy to see that $\mathbf{F}_{\Phi} + w \subset \mathbf{C}$. Observe that $\mathbf{F}_{\Phi} + w$ is a self-similar subset of \mathbf{C} since it is the attractor of the IFS $\Phi' = \{\frac{1}{9}(x+8w), \frac{1}{9}(x+2+8w)\}$. However no generating IFS of $\mathbf{F}_{\Phi'}$ can be derived from the original IFS $\{\psi_0 = x/3, \psi_1 = (x+2)/3\}$, since $w = \min \mathbf{F}_{\Phi'}$ cannot be the fixed point of any map $\psi_{i_1i_2...i_n}$ composed from ψ_0, ψ_1 due to the irrationality of w.

The above construction actually shows that C has uncountably many non-trivial self-similar subsets, and indicates the non-triviality of Mattila's question.

Download English Version:

https://daneshyari.com/en/article/4665356

Download Persian Version:

https://daneshyari.com/article/4665356

Daneshyari.com