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This study of properly or strictly convex real projective 
manifolds introduces notions of parabolic, horosphere and 
cusp. Results include a Margulis lemma and in the strictly 
convex case a thick–thin decomposition. Finite volume cusps 
are shown to be projectively equivalent to cusps of hyperbolic 
manifolds. This is proved using a characterization of ellipsoids 
in projective space.
Except in dimension 3, there are only finitely many topological 
types of strictly convex manifolds with bounded volume. In 
dimension 4 and higher, the diameter of a closed strictly 
convex manifold is at most 9 times the diameter of the thick 
part. There is an algebraic characterization of strict convexity 
in terms of relative hyperbolicity.

© 2015 Elsevier Inc. All rights reserved.

Surfaces are ubiquitous throughout mathematics; in good measure because of the 
geometry of Riemann surfaces. Similarly, Thurston’s insights into the geometry of 
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3-manifolds have led to many developments in diverse areas. This paper develops the 
bridge between real projective geometry and low dimensional topology.

Real projective geometry is a rich subject with many connections. In recent years it 
has been combined with topology in the study of projective structures on manifolds. 
Classically it provides a unifying framework as it contains the three constant curvature 
geometries as subgeometries. In dimension 3 it contains the eight Thurston geometries 
(up to a subgroup of index 2 in the case of product geometries) and there are paths of 
projective structures that correspond to transitions between different Thurston geome-
tries on a fixed manifold. Moreover, there is a link between real projective deformations 
and complex hyperbolic deformations of a real hyperbolic orbifold (see [23]). Projective 
geometry therefore offers a general and versatile viewpoint for the study of 3-manifolds.

Another window to projective geometry: The symmetric space SL(n, R)/SO(n) is iso-
morphic to the group of projective automorphisms of the convex set in projective space 
obtained from the open cone of positive definite quadratic forms in n variables. This 
set is properly convex: its closure is a compact convex set, which is disjoint from some 
projective hyperplane. The boundary of the closure has a rich structure as it consists 
of semi-definite forms and, when n = 3, contains a dense set of flat 2-discs; each cor-
responding to a family of semi-definite forms of rank 2 which may be identified with a 
copy of the hyperbolic plane.

From a geometrical point of view there is a crucial distinction between strictly con-
vex domains, which contain no straight line segment in the boundary, and the more 
general class of properly convex domains. The former behave like manifolds of negative 
sectional curvature and the latter like arbitrary symmetric spaces. However, projective 
manifolds are more general: Kapovich [37] has shown that there are closed strictly convex 
4-manifolds which do not admit a hyperbolic structure.

The Hilbert metric is a complete Finsler metric on a properly convex set Ω. This is 
the hyperbolic metric in the Klein model when Ω is a round ball. A simplex with the 
Hilbert metric is isometric to a normed vector space, and appears in a natural geometry 
on the Lie algebra sln. A singular version of this metric arises in the study of certain 
limits of projective structures. The Hilbert metric has a Hausdorff measure and hence a 
notion of finite volume.

If a manifold of dimension greater than 2 admits a finite volume complete hyperbolic 
metric, then by Mostow–Prasad rigidity that metric is unique up to isometry. In dimen-
sion 2 there is a finite dimensional Teichmüller space of deformations, parameterized by 
an algebraic variety. In the context of strictly convex structures on closed manifolds the 
deformation space is a semi-algebraic variety. There are closed hyperbolic 3-manifolds 
for which this deformation space has arbitrarily large dimension. Part of the motivation 
for this work is to extend these ideas to the context of finite volume structures, which 
in turn is motivated by the study of these (and other still mysterious) examples which 
arise via deformations of some finite volume non-compact convex projective 3-orbifolds. 
(See [22] and [23].)
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